Теорема о поглощении
Версия от 17:31, 10 октября 2011; Dgerasimov (обсуждение | вклад)
Формулировка теоремы
Формулировка
С вероятностью, равной 1, марковская цепь перейдет в поглощающее состояние, если у нее существует такое состояние.
Доказательство теоремы
Пусть P - матрица переходов, где элемент
Пусть вектор
- вектор вероятности нахождения на шаге t. Он вычисляется, как произведение вектора на нулевом шаге на матрицу перехода в степени t. Рассмотрим, что представляет из себя возведение матрицы P в степень: имеет такой вид, где X - некоторые значения.Следовательно нам надо доказать, что
, приРассмотрим путь из i-го состояния в поглощающее, равное
. Пусть - вероятность того, что через шагов из шага i не попадет в поглощающее состояние. Пусть , аТогда получаем:
В итоге получаем, что несущественные состояния стремятся к 0, а значит существенные в итоге приходят к 1, т.е. цепь приходит в поглощающее состояние.