Отношение рёберной двусвязности
Версия от 00:34, 21 октября 2011; Niko (обсуждение | вклад)
Эта статья требует доработки!
- Доказательство транзитивности отношения реберной двусвязности некорректно (убедитесь в этом).
Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).
Реберная двусвязность
| Определение: |
| Две вершины и графа называются реберно двусвязными, если между этими вершинами существуют два реберно непересекающихся пути. |
| Теорема: |
Отношение реберной двусвязности является отношением эквивалентности на вершинах. |
| Доказательство: |
|
Пусть - отношение реберной двусвязности. Рефлексивность: (Очевидно) Симметричность: (Очевидно) Транзитивность: и Доказательство: Пусть из в есть два реберно не пересекающихся пути. Их объединение будет реберно-простым циклом. Вершина реберно двусвязна с . Идем по первому пути из в до пересечения с циклом(вершина ). Идем по второму пути из в до пересечения с циклом(вершина ). Забудем про дугу содержащую вершину . Наличие двух реберно не пересекающихся путей из из в очевидно. |
Компоненты реберной двусвязности
| Определение: |
| Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности. |