Материал из Викиконспекты
Определение: |
Нетерминал — элемент, представляющий некоторую сущность языка (например, часть формулы) и не имеющий конкретного значения.
Нетерминалы обозначаются заглавными буквами латинского алфавита. |
Определение: |
Терминал — элемент алфавита [math]\Sigma[/math]
Терминалы обозначаются строчными буквами латинского алфавита. |
Последовательности из терминалов и нетерминалов обозначаются строчными буквами греческого алфавита.
Определение: |
Формальная грамматика — способ описания формального языка, представляющий собой четверку
[math]\Gamma =\langle \Sigma, N, S \in N, P \subset N^{+}\times (\Sigma\cup N)^{*}\rangle[/math], где [math]\Sigma[/math] — алфавит, [math]N[/math] — набор нетерминалов, [math]S[/math] — начальный символ грамматики, [math]P[/math] — набор правил вывода [math]\alpha\rightarrow \beta[/math] |
Определение: |
[math]\alpha \Rightarrow \beta[/math] ([math]\beta[/math] выводится из [math]\alpha[/math] за один шаг):
- [math]\alpha=\alpha_1\alpha_2\alpha_3[/math]
- [math]\beta=\beta_1\beta_2\beta_3[/math]
- [math]\alpha_1=\beta1[/math], [math]\alpha_3=\beta3[/math], [math]\alpha_2\rightarrow\beta2 \in P[/math]
|
Определение: |
[math]\alpha \Rightarrow^* \beta[/math] ([math]\beta[/math] выводится из [math]\alpha[/math] за ноль или более шагов):
[math]\exists \gamma_1, \gamma_2,...,\gamma_n : \alpha \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow ... \Rightarrow \gamma_n \Rightarrow \beta[/math] |
Определение: |
Язык грамматики — все последовательности терминалов, которые можно получить из начального символа по правилам вывода. [math]L(\Gamma) = \{\omega|S \Rightarrow^{*}\omega, \omega \in \Sigma^{*}\}[/math]. |
Примеры грамматик
Правильные скобочные последовательности
[math]\Sigma = \{(, )\}[/math]
- [math]S \rightarrow (S)[/math]
- [math]S \rightarrow SS[/math]
- [math]S \rightarrow \epsilon[/math]
Вывод строки [math](()())[/math]:
[math]S\rightarrow(S)\rightarrow(SS)\rightarrow((S)S)\rightarrow((S)(S))\rightarrow(()(S))\rightarrow(()())[/math]
Арифметические выражения
[math]\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, +, *, /, -, (, )\}[/math]
- [math]S \rightarrow S O S[/math] — два выражения, соединенные действием
- [math]S \rightarrow (S) [/math] — выражение, взятое в скобки
- [math]S \rightarrow 0[/math] — ноль
- [math]S \rightarrow DN[/math] — число, у которого первая цифра не ноль
- [math]O \rightarrow + | - | * | /[/math] — действие
- [math]D \rightarrow 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9[/math] — цифра, не являющаяся нулем
- [math]N \rightarrow NN | \epsilon[/math] — любая последовательность из цифр, возможно пустая
- [math]N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9[/math] — любая цифра
Вывод строки [math]2+2*2[/math]: [math]S \rightarrow SOS \rightarrow SOSOS \rightarrow 2OSOS \rightarrow 2O2OS \rightarrow 2O2O2 \rightarrow 2+2O2 \rightarrow 2+2*2[/math]
Левосторонний вывод для такой же строки: [math]S \rightarrow SOS \rightarrow 2OS \rightarrow 2+S \rightarrow 2+SOS \rightarrow 2+2OS \rightarrow 2+2*S \rightarrow 2+2*2[/math]