Циклическое пространство графа
Версия от 08:35, 9 декабря 2011; 192.168.0.2 (обсуждение) (→Размерность линейного пространства обобщенных циклов)
Определение
Пусть
, , — количество компонент связности .— линейное пространство, элементами которого являются —мерные двоичные вектора и их сложение определено, как сложение по модулю .
Определение: |
Циклическое пространство графа — | , где - линейный оператор, сопоставленный матрице инциндентности графа .
Определение: |
Обобщенный цикл графа G - элемент линейного пространства |
Лемма: |
Пространство изоморфно , где — пространство, элементами которого являются наборы ребер, из которых можно составить несколько простых реберно непересекающихся циклов. |
Доказательство: |
Рассмотрим .Рассмотрим граф , где — множество ребер, таких что на соответствующих местах вектора стоят единицы, а .В силу определения обобщенного цикла: .Покажем по индукции, что можно декомпозировать на несколько реберно непересекающихся простых циклов. Ведем индукцию по числу ребер. База индукции очевидно выполняется. Рассмотри . существует цикл, добавим его в декомпозицию, удалим ребра принадлежащие ему. В силу того что четность степеней вершин не изменилась то по предположению индукции декомпозируем оставшийся граф.Отсюда следует, что каждому обобщенному циклу соответствуют ребра, которые образуют набор реберно непересекающихся простых циклов. Если рассмотреть набор реберно непересекающихся простых циклов и взять все ребра, принадлежащие этим циклам, то им можно сопоставить обобщенный цикл поставив в соответствующие места поставить , во все остальные .В силу линейности оператора и того что если простой цикл , получаем что |
Размерность линейного пространства обобщенных циклов
Теорема: |
Доказательство: |
Итого: , где максимальное количество ЛНЗ столбцов . Если рассмотреть цикл в , то из-за того что каждой вершине инцидентно четное число ребер, сума столбцов соответствующих этим ребрам = 0 значит эти столбцы ЛЗ. Отсюда следует, что если любому множеству ребер, содержащих цикл, в соответствие сопоставить набор столбцов из то он будет ЛЗ. Если же множество ребер не содержит цикл, то набор ЛНЗ (если он ЛЗ, значит коэффициенты взятые из линейной комбинации образуют , значит существует цикл). Максимальное число ребер, которые мы можем выделить из G и которые не содержат цикл (в каждой компоненте связности выделим цикл). |
Литература(формулировки другие)
Харари Ф. Теория графов / пер. с англ. — изд. 4-е — М.: Книжный дом «ЛИБРОКОМ», 2009. — с.54. — ISBN 978-5-397-00622-4.