Независимые случайные величины
Версия от 16:27, 18 декабря 2011; Nechaev (обсуждение | вклад)
Определение
Определение: |
Независимые случайные величины - | и называются независимыми, если события и независимы.
Иначе говоря, две случайные величины называются независимыми, если значение одной из них не влияет на значение другой.
Дискретные случайные величины
Определение: |
Случайные величины [1] независимы (в совокупности), если для имеет место равенство: | с дискретным распределением
Стоит отметить, что если
и - дискретные случайные величины, то достаточно рассматривать случай , .Примеры
Честная игральная кость
Рассмотрим вероятностное пространство «честная игральная кость»:
, , . Для того, чтобы показать, что величины и независимы, надо рассмотреть все и .Для примера рассмотрим:
, . Тогда , , .Аналогичным образом можно проверить, что для оставшихся значений
и события также являются независимыми, а это значит, что случайные величины и независимы.Тетраэдр
Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью):
. , .Рассмотрим случай:
, . , , .Для этих значений
и события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.Заметим, что если:
, , то эти величины зависимы: положим . Тогда , , .Примечания
- ↑ Вероятность того, что случайная величина
. принимает значение меньшее , называется функцией распределения случайной величины и обозначается