Эргодическая марковская цепь

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) [math]\pi = (\pi_1,\pi_2,\ldots )^{\top}[/math], такое что [math]\pi_i \gt 0,\; i \in \mathbb{N}[/math] и
[math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots[/math].


Марковскую цепь обладающую следующими свойствами называют слабо эргодическиой, если она обладает следующими свойствами:

  1. Для любых двух различных вершин графа переходов [math]i,j \, (i\neq j)[/math] найдется такая вершина [math]k[/math] графа («общий сток»), что существуют ориентированные пути от вершины [math]i[/math] к вершине [math]k[/math] и от вершины [math]j[/math] к вершине [math]k[/math]. Замечание: возможен случай [math]k=i[/math] или [math]k=j[/math]; в этом случае тривиальный (пустой) путь от [math]i[/math] к [math]i[/math] или от [math]j[/math] к [math]j[/math] также считается ориентированным путем.
  2. Нулевое собственное число матрицы интенсивности невырождено.
  3. При [math]t \to \infty[/math] матрица переходных вероятностей стремится к матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).


Примеры графов переходов для цепей Маркова: a) цепь не является слабо эргодической (не существует общего стока для состояний [math]A_2, \, A_3[/math]); b) слабо эргодическая, но не эргодическая цепь (граф переходов не является связным) c) эргодическая цепь (граф переходов связан).

Основная теорема об эргодических распределениях

Теорема (Основная теорема об эргодических распределениях):
Пусть [math]\{X_n\}_{n \ge 0}[/math] - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей [math]P = (p_{ij}),\; i,j=1,2,\ldots[/math]. Тогда эта цепь является эргодической тогда и только тогда, когда она
  1. Неразложима;
  2. Положительно возвратна;
  3. Апериодична.

Эргодическое распределение [math]\mathbf{\pi}[/math] тогда является единственным решением системы:

[math]\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}[/math].


Пример

Пример эргодической цепи

Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Рассмотрим матрицу, следующего вида: [math]p_{ij}=0.5, i,j=1,2[/math].

Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение [math]\pi = (0.5,0.5)^{\top}[/math], такое что [math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2[/math].

См. также

Ссылки

Литература

Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"