Представление чисел с плавающей точкой

Материал из Викиконспекты
Перейти к: навигация, поиск
Эта статья находится в разработке!

Плавающая точка

Определение:
Плавающая точка (floating point) - метод представления действительных чисел, при котором число хранится в виде мантиссы и показателя степени, а значение числа вычисляется по формуле:
[math] x = (-1)^{sign} \times mant \times base^{exp} [/math], где [math] x [/math] - число, [math] sign [/math] - бит, отвечающий за знак числа, [math] mant [/math] - мантисса, [math] base [/math] - основание степени, [math] exp [/math] - показатель степени.

Такой метод является компромиссом между точностью и диапазоном представляемых значений. Представление чисел с плавающей точкой рассмотрим на примере чисел двойной точности (double precision). Такие числа занимают в памяти два машинных слова (8 байт на 32-битных системах). Наиболее распространенное представление описано в стандарте IEEE 754.

Кроме чисел двойной точности также используются следующие форматы чисел:

  • половинной точности (half precision) (16 бит),
  • одинарной точности (single precision) (32 бита),
  • четверной точности (quadruple precision) (128 бит),
  • расширенной точности (extended precision) (80 бит).

При выборе формата программисты идут на разумный компромисс между точностью вычислений и размером числа.

Нормальная и нормализованная формы

Определение:
Нормальной называется форма представления числа, при которой абсолютное значение мантиссы десятичного числа находится на полуинтервале [math] [0,1) [/math].

Недостатком такой записи является тот факт, что числа нельзя записать однозначно: [math] 0.01 = 0.001 \times 10^1 [/math].

Определение:
Нормализованной называется форма представления числа, при которой абсолютное значение мантиссы десятичного числа лежит на полуинтервале [math] [1, 10) [/math], а двоичного на полуинтервале [math] [1, 2) [/math].


Числа двойной точности

Число с плавающей точкой хранится в нормализованной форме и состоит из трех частей (в скобках указано количество бит, отводимых на каждую секцию в формате double):

  1. знак
  2. экспонента (показатель степени) (в виде целого числа в коде со сдвигом)
  3. мантисса (в нормализованной форме)

В качестве базы (основания степени) используется число [math] 2 [/math]. Экспонента хранится со сдвигом [math] -1023 [/math].

Знак
Экспонента
(11 бит)
Мантисса
(52+1 бит)
0 0 0 0 0 0 0 0 0 0 0 0 1, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
62 52 51 0
Утверждение:
Итоговое значение числа вычисляется по формуле:
[math] x = (-1)^{sign} \times (1.mant) \times 2^{exp} [/math].

Свойства чисел с плавающей точкой

  1. В нормализованном виде любое отличное от нуля число представимо в единственном виде. Недостатком такой записи является тот факт, что невозможно представить число 0.
  2. Так как старший бит двоичного числа, записанного в нормализованной форме, всегда равен 1, его можно опустить. Это используется в стандарте IEEE 754.
  3. В отличие от целочисленных стандартов (например, integer), имеющих равномерное распределение на всем множестве значений, числа с плавающей точкой (double, например) имеют квазиравномерное распределение.
  4. Вследствие свойства 3, числа с плавающей точкой имеют постоянную относительную погрешность (в отличие от целочисленных, которые имеют постоянную абсолютную погрешность).
  5. Очевидно, не все действительные числа возможно представить в виде числа с плавающей точкой.
  6. Точно в таком формате представимы только числа, являющиеся суммой некоторых обратных степеней двойки (не ниже -53). Остальные числа попадают в некоторый диапазон и округляются до ближайшей его границы. Таким образом, абсолютная погрешность составляет половину величины младшего бита.
  7. В формате double представимы числа в диапазоне [math] [2.3 \times 10^{-308}, 1.7 \times 10^{308}] [/math].

Особые значение чисел с плавающей точкой

Ноль (со знаком)

В нормализованной форме невозможно представить ноль. Для его представления в стандарте зарезервированы специальные значения мантиссы и экспоненты.

Знак
Экспонента Мантисса
0/1 0 0 0 0 0 1, 0 0 0 0 0 0 0 0 0 0  = [math]\pm0[/math]

Согласно стандарту выполняются следующие свойства:

  • [math] +0 = -0 [/math]
  • [math] \frac{-0}{ \left| x \right| } = -0\,\![/math] (если [math]x\ne0[/math])
  • [math] (-0) \cdot (-0) = +0\,\![/math]
  • [math] \left| x \right| \cdot (-0) = -0\,\![/math]
  • [math] x + (\pm 0) = x\,\![/math]
  • [math] (-0) + (-0) = -0\,\![/math]
  • [math] (+0) + (+0) = +0\,\![/math]
  • [math] \frac{-0}{-\infty} = +0\,\![/math]
  • [math] \frac{\left|x\right|}{-0} = -\infty\,\![/math] (если [math]x\ne0[/math])

Бесконечность (со знаком)

Для приближения ответа к правильному при переполнении, в double можно записать бесконечное значение. Так же, как и в случае с нолем, для этого используются специальные значение мантиссы и экспоненты.

Знак
Экспонента Мантисса
0/1 1 1 1 1 1 1, 0 0 0 0 0 0 0 0 0 0  = [math]\pm\infty[/math]

Бесконечное значение можно получить при переполнении или при делении ненулевого числа на ноль.

Неопределенность

В математике встречается понятие неопределенности. В стандарте double предусмотрено псевдочисло, которое арифметическая операция может вернуть даже в случае ошибки.

Знак
Экспонента Мантисса
0/1 1 1 1 1 1 1, 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1  = [math]NaN[/math]

Неопределенность можно получить в нескольких случаях. Приведем некоторые из них:

  • [math] f(NaN) = NaN [/math], где [math] f [/math] - любая арифметическая операция
  • [math] \infty + (-\infty) = NaN [/math]
  • [math] 0 \times \infty = NaN [/math]
  • [math] \frac{\pm0}{\pm0} = \frac{\pm \infty}{\pm \infty} = NaN [/math]
  • [math] \sqrt{x} = NaN [/math], где [math] x \lt 0 [/math]

Денормализованные числа

Денормализованные (denormalized numbers) - способ увеличить количество представимых числе в окрестности нуля. Каждое такое число по модулю меньше самого маленького нормализованного.< Согласно стандарту числа с плавающей точкой можно представить в следующем виде:

  • [math] (-1)^s \times 1.M \times 2^E [/math], в нормализованном виде если [math] E_{min} \leq E \leq E_{max} [/math],
  • [math] (-1)^s \times 0.M \times 2^E_{min} [/math], в денормализованном виде если [math] E = E_{min} - 1 [/math],

где [math] E_{min} [/math] - минимальное значение порядка, используемое для записи чисел (единичный сдвиг), [math] E_{min} - 1 [/math] - минимальное значение порядка, которое он может принимать - все биты нули, нулевой сдвиг.

Ввиду сложности, денормализованные числа обычно реализуют на программном уровне, а не на аппаратном. Из-за этого резко возрастает время работы с ними. Это недопустимо в областях, где требуется большая скорость вычислений (например, видеокарты). Так как денормализованные числа представляют числа мало отличные от нуля и мало влияют на результат, зачастую они игнорируются (что резко повышает скорость). При этом используются две концепции:

  1. Flush To Zero (FTZ) - в качестве результата возвращается нуль, как только становится понятно, что результат будет представляться в денормализованном виде.
  2. Denormals Are Zero (DAZ) - денормализованные числа, поступающие на вход, рассматриваются как нули.

Начиная с версии стандарта IEEE 754 2008 года денормализованные числа называются "субнормальными" (subnormal numbers), то есть числа, меньшие "нормальных".

Машинная эпсилон

Определение:
Машинная эпсилон - наибольшее положительное число [math] \varepsilon_m [/math], такое что, [math] 1 \oplus \varepsilon_m = 1 [/math], где [math] \oplus [/math] - машинное сложение.
Утверждение:
Таким образом, компьютер не различает числа [math] x [/math] и [math] y [/math], если [math] 1 \lt \frac{x}{y} \lt 1 + \varepsilon_m [/math].
Утверждение:
Из свойств чисел двойной точности следует, что для них [math] \varepsilon_m = 2^{-54}[/math].

Unit in the last place (Unit of least precision)

Мера единичной точности используется для оценки точности вычислений.

Определение:
Пусть [math] a [/math] - число с плавающей точкой, мантисса которого имеет длину [math] m [/math] бит, а экспонента - [math] e [/math] бит. Тогда [math] ulp(a) = 2^{e - m} [/math].


Приведем пример кода на Python, который показывает, при каком значении числа [math] x [/math] компьютер не различает числа [math] x [/math] и [math] x + 1 [/math].

>>> from math import *
>>> x = 1.0
>>> while (x != x + 1):
...   x *= 2
... 
>>> x
9007199254740992.0
>>> log(x) / log(2)
53.0

То есть [math] x = 2^{53} [/math], так как мантисса числа двойной точности содержит 53 бита (в памяти хранятся 52). В C++ для расчета расстояния между двумя числами двойной точности можно воспользоваться функцией [math] \mathrm{boost::math::float\_distance(a, b)} [/math].

Погрешность предиката "левый поворот"

Определения

Утверждение:
Пусть [math] D [/math] - множество всех чисел с плавающей точкой с операциями [math] \oplus, \ominus, \otimes. \forall a, b \in D: [/math]
  • [math] a \oplus b = (a + b) (1 + \delta), |\delta| \leq \varepsilon_m [/math],
  • [math] a \ominus b = (a - b) (1 + \delta), |\delta| \leq \varepsilon_m [/math],
  • [math] a \otimes b = ab (1 + \delta), |\delta| \leq \varepsilon_m [/math].
Утверждение:
[math] \forall a, b, c \in D^2, \tilde{v} = (b_x \ominus a_x) \otimes (c_y \ominus a_y) \ominus (b_y \ominus a_y) \otimes (c_x \ominus a_x) [/math]

[math] \exists \tilde{\epsilon} \in D: [/math]

  1. [math] \tilde{v} \gt \tilde{\epsilon} \Rightarrow (b - a) \times (c - a) \gt 0 [/math]
  2. [math] \tilde{v} \lt -\tilde{\epsilon} \Rightarrow (b - a) \times (c - a) \lt 0 [/math]

Расчет [math] \tilde{\epsilon} [/math]

Обозначим [math] v = (b - a) \times (c - a) [/math].

[math] \tilde{v} = (b_x \ominus a_x) \otimes (c_y \ominus a_y) \ominus (b_y - a_y) \otimes (c_x \ominus a_x) = [/math] [math] = [ (b_x - a_x) (c_y - a_y) (1 + \delta_1) (1 + \delta_2) (1 + \delta_3) - [/math] [math] - (b_y - a_y) (c_x - a_x) (1 + \delta_4) (1 + \delta_5) (1 + \delta_6) ] (1 + \delta_7), |\delta_i| \leq \varepsilon_m [/math]

[math] v \approx \tilde{v} [/math]

Пусть [math] e = (|(b_x - a_x) (c_y - a_y)| + |(b_y - a_y) (c_x - a_x)|) [/math].

[math] \epsilon = |v - \tilde{v}| \leq e \times (4 \varepsilon_m + 6 \varepsilon_m^2 + 4 \varepsilon_m^3 + \varepsilon_m^4) [/math]

[math] e (1 - \varepsilon)^4 \leq |(b_x - a_x) \times (c_y - a_y) - (b_y - a_y) \times (c_x - a_x)| [/math]

[math] e \leq \tilde{e} \frac{1}{(1 - \varepsilon_m)^4} = \tilde{e} (1 + 4 \varepsilon_m + 10 \varepsilon_m^2 + 20 \varepsilon_m^3 + \cdots) [/math]

[math] \epsilon \leq \tilde{\epsilon} \leq \tilde{\epsilon} (1 + 4 \varepsilon_m + 10 \varepsilon_m^2 + 20 \varepsilon_m^3 + \cdots) (4 \varepsilon_m + 6 \varepsilon_m^2 + 4 \varepsilon_m^3 + \varepsilon_m^4) [/math]

Ответ

[math] \tilde{\epsilon} \lt 8 \varepsilon_m \tilde{\epsilon} [/math]

Ссылки