Обсуждение:Полукольца и алгебры

Материал из Викиконспекты
Перейти к: навигация, поиск

Определение полукольца

Тут походу должно быть что-то вроде «найдутся такие подмножества, что их дизъюнктное объединение блаблабла», из определения Додонова это вроде не очевидно. --Дмитрий Герасимов 06:23, 21 ноября 2011 (MSK)

Хотя в той версии, которую сделал я, создаётся ощущение что их должно быть конечное число, а это, наверное, не обязательно

Определение алгебры

В третьей аксиоме, наверное, должно быть [math] B, C \in \mathcal A \Rightarrow B \cup C \in \mathcal A [/math].

И, похоже, что все-таки «Из данных аксиом следует, что [math] X = \overline \varnothing \in \mathcal A [/math] и [math] B \cap C = \overline {\overline B \cup \overline C} \in \mathcal A [/math]»

Плюсаните, если я прав. --Дмитрий Герасимов 05:22, 31 декабря 2011 (MSK)

Косяк в утверждении

[math] \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus B_1) \cup \ldots \cup (B_n \setminus B_1) \cup \ldots [/math] У меня записано, что надо [math] \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus (B_1 \bigcup B_2) \cup \ldots \cup (B_n \setminus \bigcup\limits_{k = 1}^{n - 1} B_k) \cup \ldots [/math]

Да, и вправду бред был. fixed. --Дмитрий Герасимов 05:12, 3 января 2012 (MSK)

И еще

надо добавить еще, что объединение множеств тоже входит в алгебру. [math]B \cup C = \overline{\overline{B} \cap \overline{C}}[/math]

Это добавлено после определения алгебры. Подписывайтесь, чтоли. --Дмитрий Герасимов 04:38, 3 января 2012 (MSK)

Немного формализма

Третья аксиома в определении кольца: 3. [math] B \setminus A = \bigcup\limits_n D_n[/math]. Возникает вопрос: объединение [math]\bigcup\limits_n D_n[/math] счетное или конечное или не важно? Кажется мы не уточнили это на паре (в тетрадях этого вроде ни у кого не видел), но в википедии написано, что это объединение конечное. Может быть это не играет роли.

--Dmitriy D. 04:27, 4 января 2012 (MSK)


Вот в этой строчке доказательства индексы в конце стоят некрасиво (может быть даже некорректно): [math] B \setminus \bigcup\limits_{j = 1}^{n} A_j = ( B \setminus \bigcup\limits_{j = 1}^{n-1} A_j\ ) \setminus A_n = (\bigcup\limits_{k} D_k) \setminus A_n = \bigcup\limits_{k}(D_k \setminus A_n) = \bigcup\limits_{k}(\bigcup\limits_{j} D_{k_j}) = \bigcup\limits_{l} D_l [/math] Прошу прощения, если здесь авторская задумка, но я исправлю.

--Dmitriy D. 04:27, 4 января 2012 (MSK)