Эргодическая марковская цепь
Определение: |
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) , такое что и
|
Эргодические цепи могут быть регулярными или циклическими. Циклические цепи отличаются от регулярных тем, что в процессе переходов через определенное количество шагов (цикл) происходит возврат в какое-либо состояние. Регулярные цепи этим свойством не обладают.
Стационарный режим
Эргодические марковские цепи описываются сильно связанным графом. Это означает, что в такой системе возможен переход из любого состояния
в любое состояние за конечное число шагов.Для эргодических цепей при достаточно большом времени функционирования (
) наступает стационарный режим, при котором вероятности состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени, т.е. .Для определения стационарных вероятностей
нахождения системы в состоянии нужно составить систему линейных однородных алгебраических уравнений с неизвестными:, где
Причем, искомые вероятности должны удовлетворять условию:
или, что равносильно,
Поэтому любое уравнение системы
можно заменить уравнением .Систему линейных алгебраических уравнений удобно составлять непосредственно по графу состояний. При этом в левой части уравнения записывается вероятность состояния, соответствующего рассматриваемой вершине графа, а в правой части - сумма произведений. Число слагаемых соответствует числу дуг графа, входящих в рассматриваемое состояние. Каждое слагаемое представляет произведение вероятности того состояния, из которого выходит дуга графа, на переходную вероятность, которой помечена соответствующая дуга графа.
Основная теорема об эргодических распределениях
Теорема (Основная теорема об эргодических распределениях): |
Пусть матрицей переходных вероятностей . Тогда эта цепь является эргодической тогда и только тогда, когда она
- цепь Маркова с дискретным пространством состояний и
Эргодическое распределение тогда является единственным решением системы:
|
Пример
Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Состояние меняется на противоположное, при бросании монеты, с вероятностью
.Получается мы можем рассмотрим матрицу, следующего вида:
. Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение , такое что .См. также
Примечания
- ↑
Пусть
Ссылки
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" - Издательство "Наука", 1970 г - 129 c.