Удаление eps-правил из грамматики
Используемые определения
Определение: |
Правила вида | называются -правилами.
Определение: |
Нетерминал | называется -порождающим, если .
Алгоритм удаления ε-правил из грамматики
Вход: КС грамматика
Выход: КС грамматика без -правил (может присутствовать правило , но в этом случае не встречается в правых частях правил); .
- Добавить все правила из в .
- Найти все . -порождаюшие нетерминалы
- Для каждого правила вида (где — последовательности из терминалов и нетерминалов, — -порождающие нетерминалы) добавить в все возможные варианты правил, в которых либо присутствует, либо удалён каждый из нетерминалов .
- Удалить все -правила из .
- Если в исходной грамматике выводилось , то необходимо добавить новый нетерминал , сделать его стартовым, добавить правило .
Доказательство корректности
Теорема: |
Если грамматика была построена с помощью описанного выше алгоритма по грамматике , то . |
Доказательство: |
Сначала докажем, что, если не выполнять шаг 5 алгоритма, то получится грамматика
|
Алгоритм поиска ε-порождающих нетерминалов
Вход: КС грамматика
Выход: множество -порождающих нетерминалов.
- Найти все -правила. Составить множество, состоящее из нетерминалов, входящих в левые части таких правил.
- Перебираем правила грамматики . Если найдено правило , для которого верно, что каждый принадлежит множеству, то добавить в множество.
- Если на шаге 2 множество изменилось, то повторить шаг 2.
Доказательство корректности
Теорема: |
Описанный выше алгоритм находит все -порождающие нетерминалы грамматики . |
Доказательство: |
Для доказательства корректности алгоритма достаточно показать, что, если множество Пусть после завершения алгоритма существуют нетерминалы такие, что они являются -порождающих нетерминалов на очередной итерации алгоритма не изменялось, то алгоритм нашел все -порождающие нетерминалы. -порождающими, но не были найдены алгоритмом. Выберем из этих нетерминалов нетерминал , из которого выводится за наименьшее число шагов. Тогда в грамматике есть правило , где каждый нетерминал — -порождающий. Каждый входит в множество -порождающих нетерминалов, так как иначе вместо необходимо было взять . Следовательно, на одной из итераций алгоритма уже добавился в множество -порождающих нетерминалов. Противоречие. Следовательно, алгоритм находит все -порождающие нетерминалы. |
Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — С. 273: ISBN 5-8459-0261-4 (рус.)