B-дерево
B-дерево — дерево поиска, позволяющее проводить поиск, добавление и удаление элементов за
.B-дерево было впервые предложено Р. Бэйером и Е. МакКрейтом в 1970 году.
Структура
B-дерево является идеально сбалансированным, то есть глубина всех его листьев одинакова.
Каждый узел B-дерева, кроме корня, содержит от
до ключей. Корень содержит от до ключей. — параметр дерева, не меньший . Ключи в каждом узле упорядочены.Каждый узел дерева, кроме листьев, содержащий ключи
, имеет сына. -й сын содержит ключи из отрезка .Назначение
<wikitex>B-деревья разработаны для использования на дисках (в файловых системах) или иных вторичных устройствах хранения информации с прямым доступом, а также в базах данных. B-деревья походи на красно-чёрные деревья, но они лучше минимизируют количество операций чтения-записи в диске.
В типичном приложении с B-деревом, объём хранимой информации так велик, что вся она просто не может храниться в основной памяти единовременно. Алгоритмы B-дерева копируют выбранные страницы (мера информации на дисках; обычно, от $2^{11}$ до $2^{14}$ Байт) с диска в основную память по мере надобности и записывает обратно на диск страницы, которые были изменены. Алгоритмы B-дерева хранят лишь определённое количество страниц в основной памяти в любой момент времени; таким образом, объём основной памяти не ограничивает размер B-деревьев, которыми можно управлять.</wikitex>
Операции
B-деревья представляют собой сбалансированные деревья, поэтому время выполнения стандартных операций в них пропорционально высоте. Однако, как уже было упомянуто выше, алгоритмы B-дерева созданы специально для работы с дисками (или другими носителями информации) и базами данных (или иными видами представления большого количества информация), минимизируя количество операций ввода-вывода.
Поиск ключа
Если ключ содержится в текущем узле, возвращаем его. Иначе определяем интервал и переходим к соответствующему сыну. Повторяем пока ключ не найден или не дошли до листа.
Добавление ключа
Ищем лист, в который можно добавить ключ, совершая проход от корня к листьям. Если найденный узел не заполнен, добавляем в него ключ. Иначе разбиваем узел на два узла, в первый добавляем первые
ключей, во второй — последние ключей. Добавляем ключ в один из этих узлов. Оставшийся средний элемент добавляем в узел родителя, если он заполнен — повторяем пока не встретим не заполненный узел или не дойдем до корня. В последнем случае корень разбивается на два узла и высота дерева увеличивается.Слияние
B-деревья, будучи обобщением 2-3 деревьев, могут быть слиты.
Удаление ключа
Находим ключ, который необходимо удалить
- Если удаление происходит из листа, смотрим на количество ключей в нем. Если ключей больше , то просто удаляем ключ. В противном случае, если существует соседний лист, который содержит больше ключа, удалим ключ из исходного узла, на его место поставим ключ-разделитель между исходным узлом и его соседом, а на его место поставим первый, если сосед правый, или последний, если сосед левый, ключ соседа. Если все соседи содержат по ключу, то объединяем узел с каким-либо из соседей, удаляем ключ и добавляем ключ-разделитель между узлами в объединенный узел. Если в родительском узле осталось меньше ключа, аналогичным образом добавляем в него ключи из соседей или объединяем узел в ними.
- Если удаление происходит не из листа, удаляем самый левый ключ из поддерева следующего дочернего узла или самый правый из поддерева предыдущего дочернего узла и ставим удаленный ключ на место удаляемого ключа в исходном узле.
Ссылки
- T. H. Cormen «Introduction to Algorithms» third edition, Chapter 18