СНМ (списки с весовой эвристикой)
Определение
Определение: |
Весовая эвристика (weighted-union heuristic) — улучшение наивной реализации СНМ, при котором список включает поле длины списка, и добавление идет всегда меньшего списка к большему. |
Проблема наивной реализации
Рассмотрим реализацию системы непересекающихся множеств с помощью списка, для каждого элемента которого будем хранить указатель на представителя и на следующий элемент. При такой реализации операция init для создания n множеств из одного элемента очевидно займет
времени. Для выполнения операции findSet достаточно просто перейти по ссылке на представителя за . Узким местом такой реализации является операция union. Хотя мы и можем объединить два списка за , но обновить указатели на представителя для одного из списков мы можем лишь за время пропорциональное количеству элементов. Нетрудно придумать последовательность из n - 1 операций union, требующую времени. Достаточно каждый раз сливать одно и тоже множество с одним новым элементом в том порядке, чтобы требовалось обновить указатели на представителя именно элементам "большого" множества. Поскольку i-ая операция union обновляет i указателей, общее количество указателей, обновленных всеми n - 1 операциями union равно . Отсюда следует, что амортизированное время выполнения операции union составляет .Реализация с весовой эвристикой
Предположим теперь, что каждый список включает также поле длины списка и что мы всегда добавляем меньший список к большему (при одинаковых длинах порядок добавления безразличен). При такой простейшей весовой эвристике одна операция union может потребовать
действий, если оба множества имеют членов. Однако последовательность из m операций makeSet, union и findSet, n из которых составляют операции makeSet, требует для выполнения времени.Доказательство оценки времени выполнения
Утверждение: |
При использовании связанных списков для представления СНМ и применении весовой эвристики, последовательность из m операций makeSet, union, и findSet, n из которых составляют операции makeSet, требует для выполнения времени. |
Вычислим верхнюю границу количества обновлений указателя на представителя для каждого множества из n элементов. Рассмотрим некий фиксированный объект. Когда мы обновляем указатель на представителя в объекте, он должен находиться в меньшем из множеств. Следовательно, при первом обновлении образованное множество хранит не менее 2 элементов, при втором не менее 4 элементов, и т.д. Продолжая рассуждение приходим к выводу о том, что при k n, после того как указатель на представителя в объекте обновлен , полученное в результате множество должно иметь не менее k элементов. Поскольку максимальное множество может иметь не более n элементов, во всех операциях union указатель на представителя у каждого объекта может быть обновлен не более раз.
Необходимо также отметить, что обновление указателя на голову и next представителя, а также обновление длины списка при выполнении операции union требует Отсюда легко понять, что время необходимое для выполнения всей последовательности из m операций составит времени. Таким образом, общее время, необходимое для обновления n объектов, составляет . . операций makeSet и findSet, работающих за константное время и суммарное время работы операций union для каждого объекта. |
Другие реализации
Источники
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 585—588. — ISBN 5-8489-0857-4