Идеальное хеширование

Материал из Викиконспекты
Версия от 22:42, 3 мая 2012; 91.215.123.91 (обсуждение) (добавлен псевдокод)
Перейти к: навигация, поиск

Двойное хеширование (double hashing) - один из методов закрытого хеширования. Перебор ячеек хеш-таблицы, возникающий при двойном хешировании, обладает свойствами, присущими равномерному хешированию. При двойном хешировании хеш-функция [math] h [/math] имеет следующий вид:

[math] h(k,i) = (h_1(k) + i\cdot h_2(k)) \; mod \; m [/math]

Вставка при двойном хешировании

где [math] h_1 [/math] и [math] h_2 [/math] - вспомогательные хеш-функции, [math] m [/math] - размер хеш-таблицы. Иными словами, последовательность индексов исследуемых ячеек при работе с ключом [math] k [/math] представляет собой арифметическую прогрессию (по модулю [math] m [/math]) с первым членом [math] h_1(k) [/math] и шагом [math] h_2(k) [/math]. Следовательно, в данном случае последовательность исследования зависит от ключа k по двум параметрам - выбор начальной исследуемой ячейки и расстояние между двумя исследуемыми ячейками, так как оба параметра зависят от значения ключа.

Пример вставки элемента при двойном хешировании приведен на рисунке справа.

Показана хеш-таблица размером 13 ячеек, в которой используются вспомогательные функции:

[math] h_1(k) = k \; mod \; 13 [/math]

[math] h_2(k) = 1 + k \; mod \; 11 [/math]

Мы хотим вставить ключ 14. Изначально [math] i = 0 [/math]. Тогда [math] h(14,0) = (h_1(14) + 0\cdot h_2(14)) \; mod \; 13 = 1 [/math]. Но ячейка с индексом 1 занята, поэтому увеличиваем [math] i [/math] на 1 и пересчитываем значение хеш-функции. Делаем так, пока не дойдем до пустой ячейки. При [math] i = 2 [/math] получаем [math] h(14,2) = (h_1(14) + 2\cdot h_2(14)) \; mod \; 13 = 9 [/math]. Ячейка с номером 9 свободна, значит записываем туда наш ключ.

Для того, чтобы последовательность исследования могла охватить всю таблицу, значение [math] h_2 [/math] должно быть взаимно простым с размером таблицы. Есть два удобных способа это сделать. Первый состоит в том, что в качестве размера таблицы используется простое число, а [math] h_2 [/math] возвращает натуральные числа, меньшие [math] m [/math]. Второй - размер таблицы является степенью двойки, а [math] h_2 [/math] возвращает нечетные значения.

Таким образом, основная особенность двойного хеширования состоит в том, что при различных [math] k [/math] пара [math] (h_1(k),h_2(k)) [/math] дает различные последовательности ячеек для исследования.

Простая реализация

Вставка

insert(item){
   x = h1(item.key)
   y = h2(item.key)
   for (i = 0; i < m; i++){     	
      if (table[x] == null){
         table[x] = item
         return
      }
      x = (x + y) % m
   }
   error() //ошибка, требуется увеличить размер таблицы
}

Поиск

search(key){
   x = h1(key)
   y = h2(key)
   for (i = 0; i < m; i++){ 
      if (table[x] != null)
         if (table[x].key == key)
            return table[x]
      else
         return null
      x = (x + y) % m
   }
   return null
}

Реализация с удалением

Вставка

insert(item){
   x = h1(item.key)
   y = h2(item.key)
   for (i = 0; i < m; i++){     	
      if (table[x] == null || deleted[x]){
         table[x] = item
         deleted[x] = false
         return
      }
      x = (x + y) % m
   }
   error() //ошибка, требуется увеличить размер таблицы
}

Поиск

search(key){
   x = h1(key)
   y = h2(key)
   for (i = 0; i < m; i++){ 
      if (table[x] != null)
         if (table[x].key == key && !deleted[x])
            return table[x]
      else
         return null
      x = (x + y) % m
   }
   return null
}

Удаление

remove(key){
   x = h1(key)
   y = h2(key)
   for (i = 0; i < m; i++){ 
      if (table[x] != null)
         if (table[x].key == key)
            deleted[x] = true
      else 
         return
      x = (x + y) % m
   }
}

См. также

Литература

  • Бакнелл Дж. М. Фундаментальные алгоритмы и структуры данных в Delphi, 2003
  • Кнут Д. Э. Искусство программирования, том 3. Сортировка и поиск, 2-е издание, 2000
  • Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. Алгоритмы. Построение и анализ, 2010
  • Седжвик Р. Фундаментальные алгоритмы на C. Части 1-4. Анализ. Структуры данных. Сортировка. Поиск, 2003

Ссылки