Материал из Викиконспекты
Определение
[math] \mathrm{BH_{1N}} [/math] — язык троек [math] \langle m, x, 1^t \rangle [/math], таких что недетерминированная машина Тьюринга [math] m [/math] на входной строке [math] x [/math] возращает [math]1[/math] за время [math] T(m, x) \le t [/math].
[math] \mathrm{BH_{1N}} = \lbrace \langle m, x, 1^t \rangle \bigm| m [/math] — недетерминированная машина Тьюринга, [math] m(x) = 1, T(m,x) \le t \rbrace [/math]
NP-полнота [math] \mathrm{BH_{1N}} [/math]
Теорема: |
[math] \mathrm{BH_{1N}} \in \mathrm{NPC} [/math] |
Доказательство: |
[math]\triangleright[/math] |
- [math] \mathrm{BH_{1N}} \in \mathrm{NPH} [/math]
Нужно доказать, что [math] \forall \mathrm{L} \in \mathrm{NP} [/math] существует полиномиальное сведение по Карпу к языку [math] \mathrm{BH_{1N}} [/math]. Рассмотрим произвольный язык [math] \mathrm{L} \in \mathrm{NP} [/math]. Для него существует машина Тьюринга [math] m [/math] и полином [math] p(x) [/math], такие что [math] T(m, x) \le p(|x|), \mathrm{L}(m) = \mathrm{L} [/math]. Докажем, что [math] \exists f \in \widetilde{\mathrm{P}} : \mathrm{L} \le_f \mathrm{BH_{1N}} [/math]. Рассмотрим функцию [math] f(x) = \langle m, x, 1^{p(|x|)} \rangle [/math], по входным данным возвращающую тройку из описанной выше машины Тьюринга, входных данных и времени [math] p(|x|)[/math] в унарной системе счисления. Проверим, что [math] x \in \mathrm{L} \Leftrightarrow f(x) \in \mathrm{BH_{1N}} [/math]. Пусть [math] x \in L [/math]. Тогда [math] m(x) = 1 [/math] за время не более [math] p(|x|) [/math], а значит [math]\langle m,x, 1^{p(|x|)} \rangle = f(x) \in \mathrm{BH_{1N}} [/math]. Пусть [math]x \not\in L[/math]. Тогда [math]m(x) = 0[/math] и [math]\langle m,x, 1^{p(|x|)} \rangle = f(x) \notin \mathrm{BH_{1N}} [/math]. Это значит, что [math] \forall \mathrm{L} \in \mathrm{NP}\ \exists f \in \widetilde{\mathrm{P}} : \mathrm{L} \le_f \mathrm{BH_{1N}} [/math], и из этого следует, что [math] \mathrm{BH_{1N}} \in \mathrm{NPH} [/math].
- [math] \mathrm{BH_{1N}} \in \mathrm{NP} [/math]
Можно написать недетерминированную программу, которая будет по [math] \langle m, x, 1^t \rangle [/math] моделировать [math] t [/math] шагов [math] m [/math] на входе [math] x [/math], выбирая недетерминированно соответствующие недетерминированные переходы, и если машина за это время допустила слово, то только тогда [math] \langle m, x, 1^t \rangle \in \mathrm{BH_{1N}} [/math].
|
[math]\triangleleft[/math] |
См. также