QpmtnCmax
Постановка задачи
Есть несколько станков с разной скоростью выполнения работ. Работу на каждом из станков можно прервать и продолжить позже.
Цель - выполнить все как можно быстрее.
1. Найдем нижнюю границу времени выполнения.
2. Составим оптимальное расписание.
Алгоритм построения расписания
Перед выполнением алгоритма, упорядочим все работы по убыванию их времени выполнеия:
, а все машины в порядке убывания скоростей: . Введем следующие обозначения:
, , - время выполнения -ой работы, - скорость работы -oй машины.
Необходимое условие для выполнения всех работ в интервале
:или
Кроме того, должно выполняться условие
для всех , так как это нижняя оценка времени выполнения работ . Исходя из этого получаем нижнюю границу :=
Перейдем к описанию алгоритма. Будем назвать
-ом работы - невыполненную часть работы в момент времениДалее построим расписание, которое достигает нашей оценки
, с помощью -алгоритма.- алгоритм:
WHILE существуют работы с положительным Assign(t) - время окончания какой-то работы для некоторых работ и //поиск следующего момента времени ,в который нужно будет перераспределить машины/работы Построение расписания
Функция
:- множество работ с положительным - множество всех станков WHILE множества и не пустые Найти множество работ , которых максимален. (| |,| |) Назначаем работы из множества на самых быстрых машин из множества \ Удаляем из множества самых быстрых машин
Доказательство корректности алгоритма
Так как нижняя граница
:=
то достаточно показать, что составленное расписание достигает этой оценки.
Будем считать, что в начале алгоритма все работы упорядочены, как было сказано ранее:
. Это утверждение не меняется на протяжении всего выполнения алгоритма, для любого момента времени. Получаем: . Докажем что алгоритм составляет расписание в соответствии с этим свойством. Чтобы доказать этот факт, будем считать что в любой момент времени нет простоев машин, когда есть хотя бы одна невыполненная работа. Получаем:или
Таким образом необходимая оценка достигается нашим алгоритмом.
Допустим хотя бы одна машина простаивает, в момент когда есть невыполненные работы, получим следующее неравенство для времен окончания работ (обозначим далее как
) на станках :
Докажем написанное выше неравенство:
Предположим, что
для некоторого . Тогда последней работы, выполнявшейся на станке в момент времени (где достаточно мал) меньше, чем последней работы на станке . Пришли к противоречию.Пусть
= ,где . Чтобы работы завершились в момент времени , необходимо начать их в момент времени 0, поскольку если это не выполняется, то у нас найдется работа , которая начинается позже и заканчивается в . Это означает, что в момент времени начинаются как минимум работ. Пусть первые работ стартовали вместе на всех машинах. Мы получаем , из чего следует, что для любого , удовлетворяющего условию . Таким образом, до момента времени нет простаивающих машин. Пришли к противоречию. Получаем .Пример
Пусть у нас есть 6 работ и 3 станка. Покажем работу алгоритма для данного случая.
В начальный момент времени начинаем обрабатывать работы с наибольшим временем выполнения
на станках соответственно. В момент времени 1-ой работы и 2-ой работы совпадает. С этого момента начинаем обрабатывать работы синхронно на станках: . В момент времени работа опускается до уровня работы .Работы выполняем одновременно на одном станке . В момент времени начинаем выполнять первые четыре работы на всех станках одновременно, далее просто добавятся работы и все работы закончатся одновременно.Время работы
- алгоритм вызывает функцию в самом худшем случае раз. Функция выполняется за . Итоговое время работы .
Литература
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 379 стр. — ISBN 978-3-540-69515-8