Материал из Викиконспекты
Определения
Пусть [math]G(V,E)[/math] - двудольный граф.
Определение: |
Полным(совершенным) паросочетанием называется паросочетание в которое входят все вершины. |
Определение: |
Пусть [math]X \subset V [/math]. Множeство соседей [math]X[/math] определим формулой: [math]N(X)= \{ y \in V: (x,y) \in E \}[/math] |
Теорема
Теорема (Холл): |
Полное паросочетание существует тогда и только тогда, когда для любого [math]A \subset L [/math] выполнено [math]|A| \leq |N(A)|[/math]. |
Доказательство: |
[math]\triangleright[/math] |
- Очевидно, что если существует полное паросочетание, то для любого [math]A \subset L [/math] выполнено [math]|A| \leq |N(A)|[/math]. У любого подмножества вершин есть по крайней мере столько же соседей.
- В обратную сторону будем доказывать так :
|
[math]\triangleleft[/math] |
Ссылки
Смотри также