Материал из Викиконспекты
Определения
Пусть [math]G(V,E)[/math] - двудольный граф.
Определение: |
Полным(совершенным) паросочетанием называется паросочетание в которое входят все вершины. |
Определение: |
Пусть [math]X \subset V [/math]. Множeство соседей [math]X[/math] определим формулой: [math]N(X)= \{ y \in V: (x,y) \in E \}[/math] |
Теорема
Теорема (Холл): |
Полное паросочетание существует тогда и только тогда, когда для любого [math]A \subset L [/math] выполнено [math]|A| \leq |N(A)|[/math]. |
Доказательство: |
[math]\triangleright[/math] |
- Очевидно, что если существует полное паросочетание, то для любого [math]A \subset L [/math] выполнено [math]|A| \leq |N(A)|[/math]. У любого подмножества вершин есть по крайней мере столько же соседей.
- В обратную сторону докажем по индукции(будем добавлять вершину [math]x[/math] и все инцидентные ей вершины из [math]L[/math] в [math]G'[/math] и доказывать что в L' есть полное паросочетание). Таким образом, в конце получим что в L' совпадает с
База: Одна вершина соединена хотя бы с одной вершиной из R. Следовательно база верна. |
[math]\triangleleft[/math] |
Ссылки
Смотри также