Методы генерации случайного сочетания
Постановка задачи
Необходимо сгенерировать случайное сочетание из элементов по с равномерным распределением вероятности, если есть в наличии функция для генерации случайного числа в заданном интервале.
Решение за время O(n2)
Пусть S - множество из n элементов, тогда для генерации случайного сочетания сделаем следующее:
- Выберем в множестве случайный элемент
 - Добавим его в сочетание
 - Удалим элемент из множества
 
Эту процедуру необъодимо повторить раз.
Псевдокод
for i = 1 to k 
  r = rand(1..n - i + 1);
  cur = 0;
  for j = 1 to n 
    if exist[j]
      cur++;
      if cur == r
        res[i] = a[j]
        exist[j] = false;
sort(res);
Здесь - исходный массив элементов, - массив, где будет находиться результат, - такой массив, что если , то элемент присутствует в множестве S.
Сложность алгоритма -
Доказательство корректности алгоритма
Решение за время O(n)
Для более быстрого решения данной задачи воспользуемся следующим алгоритмом: пусть задан для определенности массив размера , состоящий из единиц и нулей. Применим к нему алгоритм генерации случайной перестановки. Тогда все элементы , для которых , включим в сочетание.
Псевдокод
 for i = 1 to n 
   if i <= k
     a[i] = 1;
   else
     a[i] = 0;
 random_shuffle(a);
 for i = 1 to n
   if a[i] == 1
     insertInAnswer(i);
Доказательство корректности алгоритма
Оценка временной сложности
Алгоритм состоит из 2 невложенных циклов по итераций каждый и функции генерации случайной перестановки , работающей за по алгоритму Фишера Йетcа. Следовательно, временная сложность и всего алгоритма