Материал из Викиконспекты
Эта статья находится в разработке!
Введение
Ранее мы рассматривали уравнения вида [math] y = \lambda x - \mathcal{A} x [/math], где [math] y [/math] дано, так называемое "линейное уравнение 2 рода". Для ответа на вопрос "имеет ли решение это уравнение?" надо изучать [math] \sigma(\mathcal{A}) [/math].
Сложнее, когда задано уравнение вида [math]\mathcal{T}(x) = 0[/math] или [math]\mathcal{T}(x) = x[/math], где [math] T: X \xrightarrow[nonlinear]{} X [/math] — произвольный оператор из [math] X [/math] в [math] X [/math].
В этом параграфе мы покажем 3 способа решения таких уравнений.
Простые итерации
Решаем уравнение [math] x = \mathcal{T}(x) [/math]. Составляем последовательность [math] x_{n+1} = \mathcal{T}(x_n) [/math] и изучаем сходимость последовательности [math] \{ x_n \} \xrightarrow[]{?} x^* [/math].
Если [math] \mathcal{T} [/math] — непрерывный оператор, то [math] x_{n+1} \to \mathcal{T} x^*, \mathcal{T} x_n \to \mathcal{T} x^* [/math] и, по единственности предела, получаем [math] x^* = \mathcal{T} x^* [/math].
Во втором семестре у нас было определение производной Фреше: [math] \mathcal{T}(x+\Delta x) -\mathcal{T}(x) = \mathcal{T}'(x) \cdot \Delta x + o(\Delta x)[/math]. [math] \mathcal{T}' [/math] — линейный ограниченный оператор.
[math] \frac { \| o(\Delta x) \|} { \| \Delta x \| } \to 0 [/math]
Теорема (Локальная теорема о простой итерации): |
Пусть известно, что существует [math] \overline{x}: \mathcal{T}(\overline{x}) = \overline{x} [/math] и [math] \| \mathcal{T}' \| \le q \lt 1 [/math].
Тогда существует такой шар [math] V_{\delta} (\overline x) [/math], что если [math] x_0 \in V_{\delta} (\overline x) [/math], то:
- Метод простых итераций корректно определен: [math] \mathcal{T}x_n \in V_{\delta} (\overline x), n \le 0[/math].
- [math] x_n \to \overline x [/math]
|
Доказательство: |
[math]\triangleright[/math] |
Положим [math] \varepsilon = \frac {1-q}2 [/math].
В силу определения производной Фреше существует [math] \delta \gt 0: \| \Delta x \| \implies \| \mathcal{T} (\overline x + \Delta x) \mathcal{T}(\overline x) - \mathcal{T}'(\overline x) \cdot \Delta x \| \lt \varepsilon \| \Delta x \| [/math].
Убедимся в том, что такая [math] \delta [/math] подходит в качестве радуса шара из условия теоремы:
Предположим, что [math] x_n \in V_\delta (\overline x) [/math].
[math] \| x_{n+1} - \overline x \| = \| \mathcal{T}x_n - \mathcal{T} \overline x\| \le [/math]
[math] \le \| \mathcal{T} x_n - \mathcal{T} \overline x - \mathcal{T}' (\overline x) (x_n - \overline x) \| + \| \mathcal{T}'(\overline x) (x_n - \overline x)\| [/math].
Рассмотрим первое слагаемое: [math] x_n \in V_\delta (\overline x) \implies \| x_n - \overline x \| \lt \delta [/math], а значит, [math] \| \mathcal{T} x_n - \mathcal{T} \overline x - \mathcal{T}' (\overline x) (x_n - \overline x) \| \lt \varepsilon \| x_n - \overline x \| [/math].
Второе слагаемое: [math] \| \mathcal{T}'(\overline x) (x_n - \overline x)\| \le \| \mathcal{T}'(\overline x) \| \| x_n - \overline x \| \le q \| x_n - \overline x \| [/math]
Складывая полученное: [math] \varepsilon \| x_n - \overline x \| + q \| x_n - \overline x \| = (\frac {1-q}2 + q) \le \frac {1+q}2 \delta \lt \delta [/math].
Окончательно мы получили, что [math] x_n \in V_\delta (\overline x) \implies x_{n+1} \in V_\delta (\overline x) [/math], то есть метод простых итераций определен корректно. Попутно мы также установили, что [math] \| x_{n+1} - \overline x \| \le \frac {1+q}2 \| x_n - \overline x \| \le \hdots \le (\frac {1+q}2)^{n+1} \| x_0 - \overline x \| \xrightarrow[n \to \infty]{} 0 [/math], то есть [math] x_n \to \overline x [/math]. |
[math]\triangleleft[/math] |