О нелинейных операторных уравнениях
Ранее мы рассматривали уравнения вида
, где дано, так называемое "линейное уравнение 2 рода". Для ответа на вопрос "имеет ли решение это уравнение?" надо изучать .Сложнее, когда задано уравнение вида
или , где — произвольный оператор из в .В этом параграфе мы покажем 3 способа решения таких уравнений.
Простые итерации
Решаем уравнение
. Составляем последовательность и изучаем сходимость последовательности .Если
— непрерывный оператор, то и, по единственности предела, получаем .Во втором семестре у нас было определение производной Фреше: . — линейный ограниченный оператор.
Теорема (Локальная теорема о простой итерации): |
Пусть известно, что существует и .
Тогда существует такой шар , что если , то:
|
Доказательство: |
Положим .В силу определения производной Фреше существует .Убедимся в том, что такая подходит в качестве радуса шара из условия теоремы:Предположим, что .
. Рассмотрим первое слагаемое: , а значит, .Второе слагаемое: Складывая полученное: Окончательно мы получили, что . , то есть метод простых итераций определен корректно. Попутно мы также установили, что , то есть . |
Метод Ньютона-Канторовича
Ньютоном был предложен классический способ решения уравнений (метод касательных). До Ньютона использовали метод половинного деления. В двадцатом веке Канторович перенес соответствующие методы на операторные уравнения вида
— непрерывный оператор из в , — нормированное пространство.Предположим, что
. Получим схему метода Ньютона-Канторовича.— начальное приближение.
. Обрежем последнюю часть: .
Обозначим
.
Домножим равенство с обеих сторон на
: ..
Теперь положим
и получим итерацию метода Ньютона-Канторовича для функции
Покажем, что
, то есть из условия локальной теоремы о простой итерации.Утверждение: |
Запишем через значение :
, откуда . Подставим это равенство в выражение выше:
Итого: . , откуда |
Теорема Шаудера
Рассмотрим другую идею решения
. Оно основывается на том факте, что если функция отображает отрезок в себяЯ, то существует такая точка .Обобщение этого факта для
называется теоремой Брауэра:Теорема (Брауэр, о неподвижной точке): |
Пусть — ограниченное выпуклое замкнутое подмножество , непрерывно отображает в себя. Тогда . |
Как перенести этот факт в бесконечномерный случай? Ответ на это дает теорема Шаудера:
Определение: |
Пусть | — B-пространство, — ограничено в . — непрерывное отображение в себя. Говорят, что вполне непрерывно на , если — относительно компактно в .
Теорема (Шаудер, о неподвижной точке): |
Пусть — ограниченное замкнутое выпуклое подмножество B-пространства и вполне непрерывно отображает в себя.
Тогда . |
Замечание: теорему Брауэра нельзя будет назвать частным случаем теоремы Шаудера, так как при доказательстве теоремы Шаудера мы сошлемся на теорему Брауэера. У теоремы Шаудера также очень частое практическое применение.
Вспомогательные факты
Утверждение (Факт Первый): |
Рассмотрим — последовательность вполне непрерывных операторов на , ( ).
Тогда вполне непрерывен на . |
по равномерной сходимости, . По предположению, — вполне непрерывный: существует конечная -сеть для .. Рассмотрим и подберем такое , что . Окончательно, . Первое слагаемое по выбору и равномерной сходимости. Второе слагаемое по выбору из -сети. . Значит, мы получили -сеть для . |
Утверждение (Факт Второй): |
Рассмотрим — последовательность вполне непрерывных операторов на , .
Тогда множество относительно компактно. |
По равномерной сходимости, .Рассмотрим множество . Оно относительно компактно как конечное объединение относительно компактных множеств.рассмотрим -сеть для этого множества: . Рассмотрим . Проверим, что — -сеть для этого множества, где число определим позже.Возьмем произвольный .Рассмотрим, в какое из множеств попадает выбранный нами . Пусть, для начала, .Если , то .Пусть .
. Первые два слагаемых по равномерной сходимости, третье по выбору -сети для .Аналогичную оценку получаем, если В итоге, получили, что . — -сеть для . |