Сортировочные сети с особыми свойствами
Версия от 16:58, 10 июня 2013; Kabanov (обсуждение | вклад)
Нечетно-четная сортирующая сеть
Определение: |
Нечетно-четная сортирующая сеть (odd-even sorting network) на | входов — это транспозиционная сортирующая сеть с уровнями сравнивающих устройств, соединенных между собой по схеме "кирпичной кладки".
Примеры
Как видно, из рисунка, при
и линия соединена сравнивающим устройством на глубине c линией , если .Теорема: |
Нечетно-четная сортирующая сеть действительно является сортирующей сетью. |
Перестановочная сеть
Определение: |
Перестановочная сортирующая сеть (permutation sorting network) — сеть сортировки, содержащая на | входов и выходов переключатели, позволяющие соединять входы сети с её выходами в соответствии с любой из возможных перестановок.
Примеры
Периодическая сортировочная сеть
Определение: |
Периодическая сортировочная сеть (periodic sorting network) на | входов — сеть сортировки, содержащая входов</tex>, где - уровень сети, и у которой каждый уровень может быть построен с помощью рекурсивного алгоритма.
Примеры
Теорема: |
Если входные числа - упорядочены при некотором , то периодическая сеть приведет к выходу, который будет - упорядочен. |
Доказательство: |
Для начала раскрасим все линии красным или синим цветом в соответствии со следующими правилами: Если
Теперь можно увидеть, что первые уровней сети состоят из двух отдельных сетей: одна из красных линий, а другая - из синих линий. Компараторы на -м уровне образуют сеть слияния, как в сетях битонного или четно-нечетного слияния. Таким образом, мы получили искомый результат при .Такой способ так же годится и для случая k=2. Если вход 4-упорядочен, красные линии содержат Теперь для чисел, которые являются 2-упорядоченными; то же самое можно сказать относительно синих линий. Очевидно, что результат является 2-упорядоченным. можно предположить, что k<=t. Первые уровней разделяются на отдельных сетей размеров , каждая из которых является -упорядоченной в случае ; следовательно, линии являются -упорядоченными после уровней. Последующие уровни, очевидно, сохраняют -упорядоченность, так как они обладают "вертикальной" периодичностью порядка . |
Таким образом мы сможем сортировать
чисел, пропуская их через сеть раз.