Вещественное евклидово и псевдоевклидово пространство

Материал из Викиконспекты
Версия от 21:58, 12 июня 2013; Maryann (обсуждение | вклад) (Расстояние от вектора до подпространства)
Перейти к: навигация, поиск

Неравенство Коши-Буняковского(Шварца)

Теорема:
[math]\forall\: x,y\in E:\;|\left\langle x,y\right\rangle _{G}|\leq\Vert x\Vert_{G}\cdot\Vert y\Vert_{G}[/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим [math]\left\langle \lambda x+y;\lambda x+y\right\rangle =\Vert\lambda x+y\Vert^{2}\geq0[/math] , где [math]\lambda[/math] - число

[math]\left\langle \lambda x+y;\lambda x+y\right\rangle = \left\langle \lambda x;\lambda x\right\rangle +\left\langle \lambda x;y\right\rangle +\left\langle y;\lambda x\right\rangle +\left\langle y;y\right\rangle =[/math]

[math]\lambda^{2}\left\langle x,x\right\rangle +\lambda\cdot(\left\langle x;y\right\rangle +\left\langle y;x\right\rangle )+\left\langle y,y\right\rangle =\Vert x\Vert^{2}\cdot\lambda^{2}+2\lambda\left\langle x;y\right\rangle + \Vert y\Vert^{2}\geq0[/math]

[math]D \le 0[/math]

[math] D/4=(\left\langle x,y\right\rangle )^{2}-\Vert x\Vert^{2}\cdot\Vert y\Vert^{2}\Rightarrow|\left\langle x,y\right\rangle |\leq\Vert x\Vert\cdot\Vert y\Vert [/math]
[math]\triangleleft[/math]

NB: равенство будет только в случае [math]x=\lambda y[/math]

Теорема (следствие из Коши, неравенство треугольника):
[math]\Vert x+y \Vert \leq \Vert x \Vert+\Vert y \Vert[/math]
Доказательство:
[math]\triangleright[/math]

[math]{\Vert x+y \Vert}^{2} = \left\langle x+y; x+y\right\rangle = \Vert x\Vert^{2}+2\left\langle x;y\right\rangle + \Vert y\Vert^{2} [/math]

[math]\left\langle x;y\right\rangle \leq \Vert x\Vert\cdot\Vert y\Vert [/math] (по Коши-Буняковскому)

значит, [math]{\Vert x+y \Vert}^{2} \le \Vert x\Vert^{2}+2{\Vert x\Vert \cdot \Vert y\Vert} + \Vert y\Vert^{2} \le (\Vert x\Vert+\Vert y\Vert)^{2}[/math]

возьмём корень из обоих частей уравнения и получим искомое неравенство
[math]\triangleleft[/math]

Угол между векторами

Определение:
[math]\varphi=\angle(x,y)=arccos\frac{\left\langle x;y\right\rangle }{\Vert x\Vert\cdot\Vert y\Vert}[/math]

NB: корректность следует напрямую из неравенства Коши-Буняковского: [math]|\left\langle x,y\right\rangle |\leq\Vert x\Vert\cdot\Vert y\Vert[/math]

Расстояние от вектора до подпространства

Определение:
Пусть [math]L[/math] - подпространство [math]E\:(x \in E)[/math] Тогда [math]dist\{x,L\}=inf_{y\in L}(dist\{x,y\})[/math]