Многочлен Татта
Основные определения
Определение: |
Рассмотрим граф
| , возможно c петлями и кратными рёбрами. Определим многочлен Татта следующими рекурсивными соотношениями:
Из этого определения не очевидна корректность: почему полученная функция не зависит от порядка выкидывания рёбер? Однако, если определение корректно, , очевидно, является многочленом от двух переменных с целыми неотрицательными коэффициентами. Корректность мы докажем, связав многочлен Татта с другим многочленом - ранговым многочленом Уитни.
Корректность определения, связь с ранговым многочленом
Определение: |
Пусть | - некоторый граф. Для множества через будем обозначать граф . Через будем обозначать число компонент связности графа . Рангом множества будем называть число .
Утверждение: |
Ранг множества равен количеству рёбер в любом остовном лесе графа . (под остовным лесом здесь понимается объединение остовных деревьев всех компонент связности, т.е. такой ациклический граф , что и ) |
Действительно, в каждой компоненте связности остовного леса рёбер на одно меньше чем вершин, а общее число вершин равно | .
Теперь определим сам ранговый многочлен:
Определение: |
Ранговый многочлен графа | есть многочлен от двух переменных, определяемый формулой:
Определение: |
Показатели в формуле раногового многочлена тоже имеют некоторый смысл. Величина Величину будем называть числом лишних ребёр: именно столько рёбер можно выкинуть из множества , не меняя число компонент связности. Обозначать эту величину будем через . | равна , т.е. приросту числа компонент связности за счёт перехода к множеству рёбер . Мы будем обозначать эту величину через и называть числом важных для рёбер. (Их важно добавить к , чтобы получилось столько же компонент связности, сколько было изначально).
Далее докажем следующую техническую лемму:
Лемма: |
Пусть фиксировано некоторое ребро и множество . Обозначим через ранги множества в графе , а через - ранги в графе . Тогда для множества выполняются следующие соотношения:
|
Доказательство: |
|
Теперь, собственно, докажем связь многочлена Татта с ранговым, откуда будет следовать корректность определения для многочлена Татта:
Теорема (Татта): |
Для любого графа выполнено равенство |
Доказательство: |
Если граф Далее, разберём несколько случаев:
|
Многочлен Татта дерева
Пусть
- дерево c вершинами. Тогда . Этот факт можно легко показать по индукции: в дереве любое ребро является мостом, после стягивания которого получается опять дерево с вершинами.Многочлен Татта цикла
Многочлен Татта полного графа
Определение: |
Пусть | , и . Определим лексикографический порядок на множестве рёбер следующим образом: , если или .
Определение: |
Обозначим за | множество остовных деревьев графа . Будем говорить, что ребро внутренне активно(internally active) в , если для всех , таких что . Аналогичным образом, будем говорить, что ребро внешне активно(externally active) в , если для всех , таких что . Величиной внутренней (внешней) активности будем называть число внутренне (внешне) активных элементов в ; эти величины будем обозначать и соответственно.
Также приведём без доказательства теорему, которая связывает многочлен Татта и понятие остовного дерева:
Теорема (Татта): |
Пусть на с множеством остовных деревьев . Тогда |
Обозначение: Для простоты обозначим многочлен Татта для полного графа
за . Тогда имеет место следующая теорема:Теорема: |
Доказательство: |
Зафиксируем остовное дерево . Рассмотрим ребро , которое разбивает на поддеревья и , и при этом вершина 0 лежит в . Пусть . Тогда докажем следующие два утверждения:
Понятно, что ребро Теперь необходимое тождество для полинома Татта полного графа может быть получено при подстановке равенств (1) и (2) в и суммировании по всем парам поддеревьев и всем рёбрам типа . |
Универсальное свойство многочлена Татта
Теорема: |
Пусть числовая функция на графах обладает следующими свойствами для некоторых констант :
|
Доказательство: |
Для доказательства проведём индукцию по количеству рёбер. Поскольку для пустого графа Пусть Пусть Пусть |