Алгоритм Shift-Or
Версия от 20:31, 7 июня 2014; 178.71.173.116 (обсуждение) (Отмена правки 37936 участника 178.71.173.116 (обсуждение))
В 1990ые годы Рикардо Беза-Йетс (англ. Ricardo Baeza-Yates) и Гастон Гоннет (англ. Gaston Gonnet) изобрели простой битовый метод, эффективно решающий задачу точного поиска малых образцов (длиной в типичное английское слово). Они назвали его методом
, хотя, исходя из самого алгоритма, естественней назвать его . Также алгоритм известен как алгоритм и алгоритм Беза-Йетса-Гоннета.Алгоритм
Пусть
— шаблон длины , — текст длины .Нам потребуется двоичный массив
размером , в котором индекс пробегает значения от до , а индекс — от до ., если первые символов точно совпадают с символами , кончаясь на позиции ; иначе .
Например, пусть
, . Тогда , остальные .Получаем, что элементы, равные
, в строчке показывают все места в , где заканчиватся копии , а столбец показывает все префиксы , которые заканчиваются в позиции строки . тогда, когда вхождение заканчивается в позиции строки . То есть вычисление последней строки решает задачу точного совпадения.Построение массива
.Создадим для каждого символа алфавита
двоичный вектор длины . равно в тех позициях , где стоит символ . Например, ,Определим
как вектор, полученный сдвигом вектора для столбца вниз на одну позицию и записью в первой позиции. Старое значение в позиции теряется. То есть состоит из , к которой приписаны первые битов столбца .Из определения, нулевой столбец
состоит из нулей. Элементы любого другого столбца получаются из столбца и вектора для символа . А именно, вектор для столбца получается операцией побитового логического умножения вектора и вектора . Например, …Псевдокод
algorithm bitap_search(text : string, pattern : string) returns string m := length(pattern) if m == 0 return text /* Initialize the bit array R. */ R := new array[m+1] of bit, initially all 0 R[0] = 1 for i = 0; i < length(text); i += 1: /* Update the bit array. */ for k = m; k >= 1; k -= 1: R[k] = R[k-1] & (text[i] == pattern[k-1]) if R[m]: return (text+i - m) + 1 return nil
Корректность
Докажем, что метод
правильно вычисляет элементы массива . Заметим, что для любого элемент тогда и только тогда, когда совпадает с , а символ совпадает с . Первое условие выполнено, когда элемент массива , а второе — когда -ый бит вектора для символа равен . После сдвига столбца алгоритм логически умножает элемент столбца на элемент вектора . Следовательно, все элементы вычисляются правильно и алгоритм находит все вхождения образца в текст.Эффективность
Сложность алгоритма составляет
, на препроцессинг — построение массива требуется операций и памяти. Если же не превышает длину машинного слова, то сложность получается и соответсвенно.