Примеры матроидов
Матричный матроид
Определение: |
Пусть | — векторное пространство над телом , пусть набор векторов из пространства является носителем . Элементами независимого множества данного матроида являются множества линейно-независимых векторов из набора . Тогда , называется матричным матроидом (vector matroid)
Лемма: |
Матричный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Множество в котором нет векторов является линейно-независимым. 2) Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым. 3) Так как то . По условию , то есть . Тогда линейно-независимо по определению линейной оболочки. |
Графовый матроид
Определение: |
Пусть | — неориентированный граф. Тогда , где состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют графовым (графическим) матроидом (graphic matroid).
Лемма: |
Графовый матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Пустое множество является ациклическим, а значит входит в .2) Очевидно, что любой подграф леса, так же является лесом, а значит входит в вследствие своей ацикличности.3) В графе Допустим в как минимум две компоненты связанности, иначе являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью. не существует ребра, соединяющего две различные компоненты связанности из , значит любая компонента связанности из целиком вершинно-входит в какую-либо компоненту из . Рассмотрим любую компоненту связанности Q из , у неё вершин и рёбер. Теперь рассмотрим все компоненты связанности из , вершинно-входящие в , пусть их штук, тогда суммарное количество рёбер из равно , что не превосходит (количество рёбер в ). Просуммируем неравенство по всем компонентам связанности из и получим , что противоречит условию. Значит предположение не верно, и в существует искомое ребро из разных компонент связанности . |
Трансверсальный матроид
Определение: |
Пусть | — двудольный граф. паросочетание , покрывающее . Тогда называют трансверсальным матроидом (transversal matroid).
Лемма: |
Трансверсальный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Пустое паросочетание удовлетворяет условию. 2) Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания ребра, концами которых являются вершины из множества . Оставшееся множество ребер будет являться паросочетанием, покрывающим . Значит .3) Раскрасим ребра из паросочетания, соответствующего в синий цвет, а соответствующего — в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится ребер синего цвета, ребер красного цвета, и будет выполняться соотношение . Рассмотрим подграф , индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам — синему и красному, либо одному — синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь . Поменяем в синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид , где . Что значит, что . |
Универсальный матроид
Определение: |
Универсальным матроидом (uniform matroid) называют объект | , где
Лемма: |
Универсальный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1)
2)
3) Так как Рассмотрим и числа в каждом множестве различны, найдётся такое число , которое не будет принадлежать меньшему по мощности множеству . . |
Матроид разбиений
Определение: |
Пусть | , при этом , и — положительные целые числа. . Тогда называют матроидом разбиений (partition matroid)
Лемма: |
Матроид разбиений является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1)
2)
3) Пусть , но так как , то есть и . Из последнего следует, что . , а . Так как , тогда , но , противоречие. |
Матроид паросочетаний
Определение: |
Пусть | — неориентированный граф. паросочетание , покрывающее . Тогда называют матроидом паросочетаний (matching matroid).
Лемма: |
Матроид паросочетаний является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Пустое паросочетание удовлетворяет условию. 2) Удалим из исходного паросочетания ребра, концами которых являются вершины из множества . Оставшееся множество ребер будет являться паросочетанием, покрывающим . Значит .3) Пусть паросочетание покрывает множество , — множество . Все вершины, принадлежащие покроем ребрами из паросочетания .Так как Рассмотрим три возможных случая:
|
Бинарный матроид
Определение: |
Матроид | на множестве будем называть представимым над полем , если существуют векторное пространство над и отображение , обладающее тем свойством, что подмножество независимо тогда и только тогда, когда взаимнооднозначно на и линейно-независимо в .
Определение: |
Бинарный матроид(binary matroid) — матроид, представимый над полем целых чисел по модулю 2. |
Например, графовый матроид является бинарным.
Составим матрицу инцидентности
для графа . Строки этой матрицы соответствуют вершинам графа, а столбцы — ребрам.- Если -ое ребро есть петля, инцидентная -ой вершине, то .
- Если -ая вершина инцидентна -ому ребру, то
- Иначе
Необходимо доказать, что если мы возьмем множество ребер
, то множество столбцов матрицы инцидентности, соответствующее выбранным ребрам, линейно-независимо, и наоборот, если мы возьмем линейно-независимое множество столбцов, то соответствующее ему множество ребер, не будет образовывать цикла. Докажем эквивалентное утверждение: столбцы линейно-зависимы тогда и только тогда, когда соответствующие им ребра графа содержат цикл.Пусть столбцы линейно-зависимы, докажем, что соответствующие ребра графа содержат цикл.
Если некоторые столбцы матрицы
линейно-зависимы, то среди них можно выделить столбцы с нулевой суммой. Есть два варианта:1) Cреди выбранных столбцов есть нулевой, тогда в соответствующем множестве ребер есть петля, то есть цикл.
2) У нас есть столбец
, который является суммой остальных столбцов. Этому столбцу соответствует ребро . Начнем с вершины переходить по другим ребрам из (по каждому ребру проходим только один раз), в итоге мы придем в вершину , так для остальных вершин у нас обязательно будет четное число выходящих из них ребер, потому что иначе на позиции этой вершины в столбце была бы единица (а единицы у нас только на позициях u и v). Таким образом мы показали, что существует два пути между вершинами 7 и (тот который мы построили и путь по ребру ), значит в выбранном множестве ребер есть цикл.Пусть на множестве ребер есть цикл, докажем линейную-зависимость соответствующих столбцов.
Если среди данного множества ребер есть петля, то соответствующий ей столбец будет нулевым (по построению матрицы инцидентности), он и обеспечивает линейную-зависимость всего набора векторов. Если петли нет, то рассмотрим столбцы, отвечающие ребрам простого цикла. Любая строка матрицы
содержит в этих столбцах ровно 2 единицы. Поэтому сумма по модулю 2 указанных столбцов равна нулевому столбцу, что означает линейную зависимость исходного множества столбцов.Матроид с выкинутым элементом
Определение: |
Пусть | — матроид. Определим . Для любых и получившаяся конструкция является матроидом.
Матроид, стянутый по элементу
Определение: |
Пусть | — матроид. Определим . Для любых и , таких что получившаяся конструкция является матроидом.
Урезанный матроид
Определение: |
Пусть | — матроид. Обозначим как следующую констркуцию: , тогда является матроидом.
См. также
Источники
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды)
- Уилсон Р. — Введение в теорию графов (глава 9. Теория матроидов)
- Примеры матроидов
- Wikipedia — Matroid
- Википедия — Матроид