Циклическое пространство графа
Версия от 04:57, 14 октября 2010; 192.168.0.2 (обсуждение)
Существует несколько определений циклического пространства графа.
Определение 1
Определение: |
Циклическое пространство графа — множество множеств реберно непересекающихся циклов. | , где — множество всех циклов графа.
Определение 2
Определение: |
0-цепь — линейная комбинация | где , где — множество вершин графа.
Определение: |
1-цепь — линейная комбинация | где , где Е — множество ребер графа.
Определение: |
Граничный оператор | — линейный оператор,сопоставляющий 1-цепи 0-цепь таким образом, что если e = (u, v) то . Сложение производится по модулю два. Результат действия граничного оператора на 1-цепь называется границей 1-цепи.
Определение: |
Циклический вектор — 1-цепь с границей 0. |
Определение: |
Циклическое пространство графа — пространство образованное множеством всех циклических векторов над полем | = {0,1}.
Эквивалентность определений
Теорема: |
Определения 1 и 2 эквивалентны. |
Доказательство: |
Рассмотрим множество реберно непересекающихся циклов. 1-цепь состоящая из всех ребер из . имеет границу 0, так как для любого ребра встречаются в четное число раз. |
Свойства
Теорема: |
Циклическое пространство графа линейно. |
Доказательство: |
В циклическом пространстве графа задано сложение по модулю два. Нейтральным элементом относительно сложения является пустой граф. Любой элемент циклического пространства сам себе противоположен. Отсюда выполнение восьми условий линейности очевидно. |
Лемма: |
Степени всех вершин всех циклов циклического пространства четны. |
Доказательство: |
Рассмотрим циклический вектор | . Если степень какой-то вершины нечетна то в она входит нечетное число раз, значит не равно 0, что противоречит определению циклического вектора.
Теорема: |
Размерность циклического пространства равна m - n + k, где m - число ребер графа, n - число вершин, k - число компонент связности. |
Доказательство: |
Из теоремы о том, что множество фундаментальных циклов относительно любого каркаса T графа G образует базис циклического пространства G следует что размерность циклического пространства равна числу ребер не входящих в каркас. Каркас содержит n - k ребер, значит размерность циклического пространства равна m - n + k. |