Получение номера по объекту
Описание алгоритма
Номер данного комбинаторного объекта равен количеству меньших в лексикографическом порядке комбинаторных объектов (нумерацию ведём с ). Все объекты меньшие данного можно разбить на непересекающиеся группы по длине совпадающего префикса. Тогда количество меньших объектов можно представить как сумму количеств объектов у которых префикс длины совпадает, а элемент лексикографически меньше -го в данном объекте (). Следующий алгоритм вычисляет эту сумму
- — искомый номер комбинаторного объекта.
 - — данный комбинаторный обьект, состоящий из элементов множества .
 - - (количество комбинаторных объектов с префиксом от 1 до равным данному и с -м элементом равным )
 
int object2num(a: list <A>) 
  numOfObject = 0                          
  for i = 1 to n do                       // перебираем элементы комбинаторного объекта
    for j = 1 to a[i] - 1 do               // перебираем элементы, которые в лексикографическом порядке меньше  рассматриваемого
      if элемент  можно поставить на -e место
        numOfObject += d[i][j]
  return numOfObject
Сложность алгоритма — , где - количество различных элементов, которые могут находиться в данном комбинаторном объекте. Например, для битового вектора поскольку возможны только и . Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. Приведем примеры способов получения номеров некоторых из комбинаторных объектов по данному объекту.
Перестановки
Рассмотрим алгоритм получения номера в лексикографическом порядке по данной перестановке размера .
- — количество перестановок данного размера.
 - — данная перестановка.
 - — использовали ли мы уже эту цифру в перестановке.
 
function permutation2num(a: list <int>) numOfPermutation = 0 for i = 1 to n do // - количество элементов в перестановке for j = 1 to a[i] - 1 do // перебираем элементы, лексикографически меньшие нашего, которые могут стоять на -м месте if was[j] == false // если элемент ранее не был использован numOfPermutation += P[n - i] // все перестановки с префиксом длиной равным нашему, и -й элемент у которых меньше нашего в лексикографическом порядке, идут раньше данной перестановки was[a[i]] = true // -й элемент использован return numOfPermutation
Данный алгоритм работает за .
Битовые вектора
Рассмотрим алгоритм получения номера в лексикографическом порядке данного битового вектора размера . Всего существует битовых векторов длины . На каждой позиции может стоять один из двух элементов независимо от того, какие элементы находятся в префиксе, поэтому поиск меньших элементов можно упростить до условия:
- — искомый номер вектора.
 - — данный вектор.
 
function bitvector2num(bitvector: list <int>)
  numOfBitvector = 0
  for i = 1 to n do                                         
   if bitvector[i] == 1  
        numOfBitvector += pow(2, n - i)
  return numOfBitvector
Данный алгоритм работает за .
Скобочные последовательности
См. также
- Программирование в алгоритмах / С. М. Окулов. — М.: БИНОМ. Лаборатория знаний, 2002. стр.31