Теорема о ёмкостной иерархии
Формулировка
Теорема о емкостной иерархии утверждает, что для любых двух конструируемых по памяти функций и таких, что , выполняется .
Доказательство
Зафиксируем функции
и .Рассмотрим язык
не допускает, используя не более памяти .Допустим, что
, тогда существует детерминированная машина Тьюринга такая, что .Рассмотрим выход машины
на входе .Пусть
допускает . Тогда , но в по определению не может быть пары , которую допускает . Таким образом, не может допускать .Если
не допускает , то не принадлежит языку . Из определения это значит, что либо допускает , либо не допускает, используя памяти больше . Но выбрана таким образом, что на любом входе она использует не более памяти. Получаем противоречие.Следовательно, такой машины не существует. Таким образом,
., так как языку можно сопоставить машину Тьюринга , распознающую и такую, что на любом входе будет работать аналогично . Если завершила работу, используя не более памяти, и не допустила, то допускает . В другом случае не допускает. Любая такая машина использует памяти не более . , поэтому начиная с некоторого , будет использовать памяти не более .
Получается, что
и . Следовательно,Теорема доказана.