Алгоритм построения Эйлерова цикла
Описание алгоритма
Алгоритм находит Эйлеров цикл как в ориентированном, так и в неориентированном графе. Перед запуском алгоритма необходимо проверить граф на эйлеровость. Чтобы построить Эйлеров путь, нужно запустить алгоритм из вершины с нечетной степенью.
Алгоритм напоминает поиск в глубину. Главное отличие состоит в том, что пройденными помечаются не вершины, а ребра графа. Начиная со стартовой вершины строим путь, добавляя на каждом шаге не пройденное еще ребро, смежное с текущей вершиной. Вершины пути накапливаются в стеке . Когда наступает такой момент, что для текущей вершины все инцидентные ей ребра уже пройдены, записываем вершины из в ответ, пока не встретим вершину, которой инцидентны не пройденные еще ребра. Далее продолжаем обход по не посещенным ребрам.
Псевдокод
Код проверки графа на эйлеровость:
boolean checkForEulerPath(): int numberOfOdd = 0 for v inif vertexDegree(v) mod 2 == 1 numberOfOdd = numberOfOdd + 1 if numberOfOdd > 2 // если количество вершин с нечетной степенью больше двух, то граф не является эйлеровым return false boolean vis[sizeOf ] // инициализировать массив значениями false for v in if vertexDegree(v) > 0 dfs(v, vis) break for v in if vertexDegree(v) > 0 and not vis[v] // если количество компонент связности, содержащие ребра, больше одной, return false // то граф не является эйлеровым return true // граф является эйлеровым // Вспомогательные функции: function dfs(v : Vertex, vis[] : boolean): vis[v] = true for (v, u) in if not vis[u] dfs(u, vis) int vertexDegree(v : Vertex): int count = 0 for (v, u) in count = count + 1 return count
Код построения эйлерова пути:
function findEulerPath(v : Vertex): // если граф является полуэйлеровым, то алгоритм следует запускать из вершины нечетной степени Stack.push(v) while not .isEmpty() w = .top() if exists (w, u) in .push(u) remove(w, u) else .pop() print(w)
Доказательство
1. Данный алгоритм проходит по каждому ребру, причем ровно один раз. Допустим, что в момент окончания работы алгоритма имеются еще не пройденные ребра. Поскольку граф связен, должно существовать хотя бы одно непройденное ребро, инцидентное посещенной вершине. Но тогда эта вершина не могла быть удалена из
Так как после прохода по ребру оно удаляется, то пройти по нему дважды алгоритм не может.
2. Напечатанный путь — маршрут, содержащий все ребра графа, при этом не содержит ребра, не лежащие на пути графа. Будем говорить, что ребро представлено в или , если в какой-то момент работы алгоритма вершины и находятся рядом. Каждое ребро графа представлено в . Рассмотрим случай, когда в перемещена вершина , а следующей в лежит . Возможны 2 варианта:
- На следующем шаге перемещена в . Тогда представлено в .
- Сначала будет пройдена некоторая последовательность ребер, начинающаяся в вершине . Ввиду четности степеней эта последовательность может закончиться только в вершине , а значит она следующей попадет в и будет представлено в .
Из пунктов 1 и 2 следует, что
- искомый эйлеров путь.Рекурсивная реализация
function findEulerPath(v):
for (v, u) in
remove(v, u)
findEulerPath(u)
print(v)
Время работы
Если реализовать поиск ребер инцидентных вершине и удаление ребер за
Чтобы реализовать поиск за , для хранения графа следует использовать списки смежных вершин; для удаления достаточно добавить всем ребрам свойство deleted бинарного типа.