Дерево поиска, наивная реализация
Бинарное дерево поиска обладает следующим свойством: если
— узел бинарного дерева с ключом , то все узлы в левом поддереве должны иметь ключи, меньшие , а в правом поддереве большие .Операции в бинарном дереве поиска
Для представления бинарного дерева поиска в памяти будем использовать следующую структуру:
Node: T key // ключ узла Node left // указатель на левого потомка Node right // указатель на правого потомка Node parent // указатель на предка
Обход дерева поиска
Есть три операции обхода узлов дерева, отличающиеся порядком обхода узлов:
- — обход узлов в отсортированном порядке,
- — обход узлов в порядке: вершина, левое поддерево, правое поддерево,
- — обход узлов в порядке: левое поддерево, правое поддерево, вершина.
func inorderTraversal(x : Node): if x != null inorderTraversal(x.left) print x.key inorderTraversal(x.right)
При выполнении данного обхода вершины будут выведены в следующем порядке: 1 3 4 6 7 8 10 13 14.
func preorderTraversal(x : Node) if x != null print x.key preorderTraversal(x.left) preorderTraversal(x.right)
При выполнении данного обхода вершины будут выведены в следующем порядке: 8 3 1 6 4 7 10 14 13.
func postorderTraversal(x : Node) if x != null postorderTraversal(x.left) postorderTraversal(x.right) print x.key
При выполнении данного обхода вершины будут выведены в следующем порядке: 1 4 7 6 3 13 14 10 8.
Данные алгоритмы выполняют обход за время
, поскольку процедура вызывается ровно два раза для каждого узла дерева.Поиск элемента
Для поиска элемента в бинарном дереве поиска можно воспользоваться следующей процедурой, которая принимает в качестве параметров корень дерева и искомый ключ. Для каждого узла функция сравнивает значение его ключа с искомым ключом. Если ключи одинаковы, то функция возвращает текущий узел, в противном случае функция вызывается рекурсивно для левого или правого поддерева. Узлы, которые посещает функция образуют нисходящий путь от корня, так что время ее работы
, где — высота дерева.Node search(x : Node, k : T): if x == null or k == x.key return x if k < x.key return search(x.left, k) else return search(x.right, k)
Поиск минимума и максимума
Чтобы найти минимальный элемент в бинарном дереве поиска, необходимо просто следовать указателям
от корня дерева, пока не встретится значение . Если у вершины есть левое поддерево, то по свойству бинарного дерева поиска в нем хранятся все элементы с меньшим ключом. Если его нет, значит эта вершина и есть минимальная. Аналогично ищется и максимальный элемент. Для этого нужно следовать правым указателям.Node minimum(x : Node): if x.left == null return x return minimum(x.left)
Node maximum(x : Node): if x.right == null return x return maximum(x.right)
Данные функции принимают корень поддерева, и возвращают минимальный (максимальный) элемент в поддереве. Обе процедуры выполняются за время
.Поиск следующего и предыдущего элемента
Реализация с использованием информации о родителе
Если у узла есть правое поддерево, то следующий за ним элемент будет минимальным элементом в этом поддереве. Если у него нет правого поддерева, то нужно следовать вверх, пока не встретим узел, который является левым дочерним узлом своего родителя. Поиск предыдущего выполнятся аналогично. Если у узла есть левое поддерево, то следующий за ним элемент будет максимальным элементом в этом поддереве. Если у него нет левого поддерева, то нужно следовать вверх, пока не встретим узел, который является правым дочерним узлом своего родителя.
Node next(x : Node): if x.right != null return minimum(x.right) y = x.parent while y != null and x == y.right x = y y = y.parent return y
Node prev(x : Node): if x.left != null return maximum(x.left) y = x.parent while y != null and x == y.left x = y y = y.parent return y
Обе операции выполняются за время
.Реализация без использования информации о родителе
Если у узла есть правое поддерево, то следующий за ним элемент будет минимальным элементом в этом поддереве. Если у него нет правого поддерева, то начнем поиск от корня. Спускаемся вниз по дереву. Если значение узла больше значения в рассматриваемом в данный момент узле, перейдем в правое поддерево, иначе перейдем в левое поддерево. Аналогично выполняется поиск предыдущего элемента. Рекурсивные реализации обеих функций:
Node next(x : Node, t : Node): // x — элемент, для которого ищем следующий, t — текущее поддерево if t != null Node successor = next(x, t.left) if successor == null if t.key > x.key return t else return successor return next(x, t.right) return null
Node prev(x : Node, t : Node): // x — элемент, для которого ищем предыдущий, t — текущее поддерево if t != null Node ancestor = prev(x, t.right) if ancestor == null if t.key <= x.key return t else return ancestor return prev(x, t.left) return null
Обе операции выполняются за время
.Вставка
Операция вставки работает аналогично поиску элемента, только при обнаружении у элемента отсутствия ребенка нужно подвесить на него вставляемый элемент.
Реализация с использованием информации о родителе
func insert(x : Node, z : Node): // x — корень поддерева, z — вставляемый элемент if z.key > x.key if x.right != null insert(x.right, z) else z.parent = x x.right = z else if x.left != null insert(x.left, z) else z.parent = x x.left = z
Реализация без использования информации о родителе
func insert(x : Node, z : Node): // x — корень поддерева, z — вставляемый элемент if z.key <= x.key if x.left == null x.left = z else insert(x.left, z) else if x.right == null x.right = z else insert(x.right, z)
Время работы алгоритма для обеих реализаций —
.Удаление
Нерекурсивная реализация
Для удаления узла из бинарного дерева поиска нужно рассмотреть три возможные ситуации. Если у узла нет дочерних узлов, то у его родителя нужно просто заменить указатель на
. Если у узла есть только один дочерний узел, то нужно создать новую связь между родителем удаляемого узла и его дочерним узлом. Наконец, если у узла два дочерних узла, то нужно найти следующий за ним элемент (у этого элемента не будет левого потомка), его правого потомка подвесить на место найденного элемента, а удаляемый узел заменить найденным узлом. Таким образом, свойство бинарного дерева поиска не будет нарушено. Время работы алгоритма — .Случай | Иллюстрация |
---|---|
Удаление листа | |
Удаление узла с одним дочерним узлом | |
Удаление узла с двумя дочерними узлами |
func delete(t : Node, v : Node): // дерево и удаляемый элемент p = v.parent // предок удаляемого элемента if v.left == null and v.right == null // первый случай: удаляемый элемент - лист if p.left == v p.left = null if p.right == v p.right = null else if v.left == null or v.right == null // второй случай: удаляемый элемент имеет одного потомка if v.left == null if p.left == v p.left = v.right else p.right = v.right v.right.parent = p else if p.left == v p.left = v.left else p.right = v.left v.left.parent = p else // третий случай: удаляемый элемент имеет двух потомков successor = next(v, t) v.key = successor.key if successor.parent.left == successor successor.parent.left = successor.right if successor.right != null successor.right.parent = successor.parent else successor.parent.right = successor.right if successor.right != null successor.right.parent = successor.parent
Рекурсивная реализация
При рекурсивном удаления узла из бинарного дерева нужно рассмотреть три случая: удаляемый элемент находится в левом поддереве текущего поддерева, удаляемый элемент находится в правом поддереве или удаляемый элемент находится в корне. В двух первых случаях нужно рекурсивно удалить элемент из нужного поддерева. Если удаляемый элемент находится в корне текущего поддерева и имеет два дочерних узла, то нужно заменить его минимальным элементом из правого поддерева и рекурсивно удалить минимальный элемент из правого поддерева. Иначе, если удаляемый элемент имеет один дочерний узел, нужно заменить его потомком. Время работы алгоритма —
. Рекурсивная функция, возвращающая дерево с удаленным элементом :Node delete(root : Node, z : Node): // корень поддерева, удаляемый элемент if root == null return root if z.key < root.key root.left = remove(root.left, z) else if z.key > root.key root.right = remove(root.right, z) else if root.left != null and root.right != null root.key = minimum(root.right).key root.right = remove(root, root.right) else if root.left != null root = t.left else root = t.right return root
См. также
Источники информации
- Википедия — Двоичное дерево поиска
- Wikipedia — Binary search tree
- Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ = Introduction to Algorithms / Под ред. И. В. Красикова. — 2-е изд. — М.: Вильямс, 2005. — 1296 с. — ISBN 5-8459-0857-4