Материал из Викиконспекты
Определения
Интегральные неравенства Гёльдера и Минковского
Теорема (Гёльдер): |
[math](X, \mathfrak{A}, \mu)[/math] — пространство с мерой; [math]f \in L^p, g \in L^q, p \gt 1, \dfrac{1}{p} + \dfrac{1}{q} = 1[/math]. Тогда [math]
\displaystyle\int\limits_X |fg| \, d\mu \lt +\infty
,\;
\displaystyle\int\limits_X \left|fg\right| \, d\mu
\leq
\left(\displaystyle\int\limits_X |f|^{p} \, d\mu\right)^{1/p}
\left(\displaystyle\int\limits_X |g|^{q} \, d\mu\right)^{1/q}[/math] |
Теорема (Минковский): |
Пусть [math](X,\mathfrak{A},\mu)[/math] — пространство с мерой, и функции [math]f,g \in L^{p}(X,\mathfrak{A},\mu)[/math]. Тогда [math]f+g \in L^p(X,\mathfrak{A},\mu)[/math], и более того:
- [math]\left(\displaystyle\int\limits_X |f(x) + g(x)|^p\, \mu(dx) \right)^{1/p} \leqslant \left( \displaystyle\int\limits_X |f(x)|^p\, \mu(dx)\right)^{1/p} + \left( \displaystyle\int\limits_X |g(x)|^p\, \mu(dx)\right)^{1/p}[/math].
|
Интеграл комплекснозначной функции
Пространство $L^p(E,\mu)$
Определение: |
[math]L^0(E, \mu)[/math] — множество измеримых функций, почти везде конечных на [math]E[/math]. |
Определение: |
[math]L^p(E, \mu) = \Bigl\{f \in L^0(E, \mu) \ \Bigm|\ \displaystyle\int_E |f|^p \;d\mu \lt +\infty \Bigr\}[/math]. |
Пространство $L^\infty(E,\mu)$
Определение: |
[math]L^\infty(E, \mu) = \left\{ f \in L^0(X, \mu) \ \middle|\ \operatorname*{ess\,sup}\limits_E |f| \lt +\infty \right\}[/math] |
Существенный супремум
Определение: |
[math] f \colon X \to \overline{\mathbb R}[/math]
[math]\mathrm{ess } \sup f = \inf \{ M \in \overline{\mathbb R} \mid f(x) \leqslant M[/math] при почти всех [math]x\}[/math] |
Фундаментальная последовательность, полное пространство
Определение: |
Последовательность [math]\{f_n\}_{n \geqslant 1} \subset L^p(X, \mu)[/math] называется фундаментальной в [math]L^p(X, \mu)[/math], если [math]\|f_n - f_k\|_p \to 0[/math] при [math]k, n \to \infty[/math], т.е.
- [math]\forall \varepsilon \gt 0 \ \exists N : \|f_n - f_k\| \lt \varepsilon[/math] при [math]k, n \gt N[/math].
|
Плотное множество
Определение: |
[math]X[/math] — метрическое пространство.
[math]A \subset X[/math] — (всюду) плотно в [math]X[/math], если
для любого открытого мн-ва [math]G \subset X \quad A \cap G \ne \varnothing[/math].
Или, эквивалентно, любой шар [math]B(x_0, r)[/math] содержит точки из [math]A[/math]. |
Финитная функция
Определение: |
[math]f[/math] — финитная в [math]\mathbb R^m[/math], если она равна нулю вне некоторого шара. |
Гильбертово пространство
Определение: |
[math]\mathcal H[/math] — полное (любая фундаментальная последовательность сходится в этом пространстве) линейное пространство со скалярным произведением |
Определение: |
[math]\mathcal{H} \[/math] — гильбертово пространство:
- [math]\forall x, y \in \mathcal H \quad x \perp y \Leftrightarrow \langle x, y \rangle = 0[/math]
- [math]\mathcal A \in \mathcal H \quad x \perp \mathcal A : \ \forall a \in \mathcal A \ x \perp a[/math]
- [math]\displaystyle\sum_{k=1}^\infty x_k[/math] — ортогональный ряд, если [math]\forall i, j (i \ne j) \ x_i \perp x_j[/math]
|
Ортогональная система, ортонормированная система векторов, примеры
Определение: |
Система векторов [math]\{e_i\}[/math] называется ортогональной, если [math]\forall i, j \ e_i \perp e_j[/math] |
Определение: |
Если к тому же [math]\forall i \ |e_i| = 1[/math] — тогда ортонормированная система |
Пример: |
Стандартный базис евклидового пространства — ортонормированная система |
Пример: |
[math]\{1, \sin x, \cos x, \sin 2x, \cos 2x, \dotsc\}[/math] — ортогональная система.
[math]\left\{\dfrac{1}{\sqrt{2\pi}}, \dfrac{\sin x}{\sqrt \pi}, \dotsc\right\}[/math] — ортонормированная система в [math]L^2[0; 2\pi][/math] |
Пример: |
[math]1, \left\{\dfrac{e^{ikx}}{\sqrt{2\pi}}\right\}[/math] — ортонормированная система в [math]L^2[0; 2\pi][/math] над [math]\mathbb C[/math] |
Сходящийся ряд в гильбертовом пространстве
Коэффициенты Фурье, ряд Фурье
Определение: |
[math]t \in L^1[-\pi; \pi][/math], тогда [math]a_k, b_k, c_k[/math] — коэффициенты Фурье для [math]t (a_k(f), b_k(f), c_k(f))[/math], а ряд [math]\dfrac{a_0(t)}{2} + \sum a_k(t) \cos kx + b_k(t) \sin kx \ ; \sum c_k(t) e^{2kt}[/math] — ряд Фурье |
Базис, полная, замкнутая ОС
Определение: |
- [math]\{e_k\}[/math] — ОС — базис, если [math]\forall x \in H \quad x = \sum\limits_{k=1}^{+\infty} c_k(x) e_k[/math]
- [math]\{e_k\}[/math] — ОС — полная в [math]H[/math], если [math]\left(\forall k\ z \perp e_k\right) \Rightarrow z = 0[/math]
- [math]\sum |c_k(x)|^2 \|e_k\|^2 = \|x\|^2[/math] — уравнение Парсеваля (уравнение замкнутости).
Если [math]\forall x[/math] выполнено уравнение замкнутости, то [math]\{e_k\}[/math] — замкнутая ОС.
|
Тригонометрический ряд
Определение: |
[math]T_n(x) = \dfrac{a_0}{2} + \displaystyle\sum_{k=1}^n a_k \cos kx + b_k \sin kx[/math] — тригонометрический полином степени [math]n[/math]. |
Определение: |
[math]T(x) = \dfrac{a_0}{2} + \displaystyle\sum_{k=1}^{+\infty} a_k \cos kx + b_k \sin kx[/math] — тригонометрический ряд. |
Коэффициенты Фурье функции
Ядро Дирихле, ядро Фейера
Определение: |
[math]D_n(t) = \dfrac{1}{\pi} \left(\dfrac12 + \sum\limits_{k=1}^n \cos kt \right) \quad n = 0, 1, \dotsc[/math] — ядро Дирихле,
[math]\Phi_n(t) = \dfrac{1}{n+1} \sum\limits_{k=0}^n D_k(t)[/math] — ядро Фейера |
Свёртка
Определение: |
[math]f, k \in L^1[-\pi; \pi][/math]
[math](f*k)(x) = \int\limits_{-\pi}^{\pi} f(t) k(x-t) \;dt = \int\limits_{-\pi}^{\pi} f(x-t) k(t) \;dt[/math]
[math](f*k)(x)[/math] — свёртка. |
Аппроксимативная единица
Определение: |
[math]D \subset \mathbb R, x_0 \in \overline{\mathbb R}[/math] — пред. точка [math]D[/math].
[math]\forall h \in D[/math] определена функция [math]K_h(x)[/math], удовлетворяющая свойствам:
- [math]\forall h \in D \ K_h \in L^1[-\pi; \pi] \quad \left(\int\limits_{-\pi}^\pi K_h(t) = 1\right)[/math]
- L-нормы [math]K_h[/math] огр. в свк.: [math]\exists M \, \forall h \in D \quad \int\limits_{-\pi}^{\pi} |K_h| \;dt \leqslant M[/math]
- [math]\forall \delta \gt 0 \int\limits_{E\delta} |K_n| \xrightarrow[h \to x_0]{} 0[/math]
Тогда семейство [math]K_h[/math] называется аппроксимативной единицей. |
Усиленная аппроксимативная единица
Определение: |
Заменим последнюю аксиому в предыдущем определении на следующую:
- [math]K_n \in L^\infty [-\pi; \pi], \quad \operatorname*{ess\,sup}\limits_{E\delta} |K_h| \xrightarrow[h \to x_0]{} 0[/math]
Тогда [math]K_h[/math] — усиленная аппроксимативная единица. |
Метод суммирования средними арифметическими
Измеримое множество на простой двумерной поверхности в R^3
Мера Лебега на простой двумерной поверхности в R^3
Поверхностный интеграл первого рода
Определение: |
[math]\int f(x(t), y(t), z(t)) \sqrt{x'^2 + y'^2 + z'^2} dt[/math] |
Кусочно-гладкая поверхность в R^3
Определение: |
[math]M \subset \mathbb R^3[/math] называется кусочно-гладкой, если [math]M[/math] представляет собой объединение:
- конечного числа простых гладких поверхностей
- конечного числа простых гладких дуг
- конечного числа точек
|
Сторона поверхности
Определение: |
Сторона поверхности — это непрерывное поле единичных нормалей на поверхности |
Задание стороны поверхности с помощью касательных реперов
Определение: |
Репер — упорядоченный набор из двух (неколлинеарных) касательных векторов к поверхности |
Определение: |
Поле реперов [math]v_1, v_2 \colon M \to \mathbb R^3[/math], если [math]\forall x \in M \quad \langle v_1(x), v_2(x) \rangle[/math] — касательный репер |
Определение: |
Сторона поверхности задаётся с помощью касательных реперов:
[math]n_0(x) = \dfrac{v_1(x) \times v_2(x)}{|v_1(x) \times v_2(x)|}[/math] |
Интеграл II рода
Ориентация контура, согласованная со стороной поверхности
Ротор, дивергенция векторного поля
Определение: |
Пусть [math]V = (P, Q, R)[/math] — гладкое векторное поле в некоторой области [math]E \subset \mathbb R^3[/math]. Тогда
- [math]\operatorname{rot} V = (R'_y - Q'_z,\; P'_z - R'_x,\; Q'_x - P'_y)[/math]
|
Соленоидальное векторное поле
Определение: |
[math]v = (P, Q, R)[/math] — соленоидальное, если существует векторный потенциал [math]B[/math], т.е. [math]v = \operatorname{rot} B[/math]. |
Теоремы
Теорема об интегрировании положительных рядов
Теорема: |
[math](X, \mathfrak{A}, \mu) \quad U_n - [/math] измеримые функции на [math]X, U_n(x) \geqslant 0 [/math] при всех [math]x[/math]. Тогда
- [math]\displaystyle\int \Bigl(\displaystyle\sum U_n(x)\Bigr) d\mu = \displaystyle\sum \Bigl(\displaystyle\int U_n(x) d\mu\Bigr)[/math]
|
Абсолютная непрерывность интеграла
Теорема: |
[math](X, \mathfrak{A}, \mu), f - [/math] суммируемая функция
[math]\forall \epsilon \gt 0 \quad \exists \delta \gt 0 : \forall E \in \mathfrak{A} \quad \mu E \lt \delta \Rightarrow \int\limits_E |f|d\mu \lt \epsilon[/math] |
Теорема Лебега о мажорированной сходимости для случая сходимости по мере
Теорема: |
[math](X, \mathfrak{A}, \mu), f, f_n: X \rightarrow \mathbb{R}, f_n \rightarrow f[/math] по мере [math]\mu[/math]
[math]\exists g[/math] - суммируемая и [math]\forall n |f_n| \leqslant g[/math] для почти всех [math]x[/math]
Тогда [math]f_n, f[/math] - суммируемые и [math]\int |f-f_n| d\mu \to 0[/math] |
Теорема Лебега о мажорированной сходимости для случая сходимости почти везде
Теорема: |
[math](X, \mathfrak{A}, \mu), f, f_n : X \rightarrow \tilde{\mathbb{R}}, f_n \rightarrow f [/math] почти везде
[math]\exists g[/math] - суммируемая и [math]\forall n |f_n| \leqslant g[/math] для почти всех [math]x[/math]
Тогда [math]f_n, f[/math] суммируемые и [math]\int |f-f_n|d\mu \to 0[/math] |
Теорема Фату
Теорема: |
[math](X, \mathfrak{A}, \mu), f_n \to f[/math] почти везде на [math]X[/math], и [math]\exists C: \forall n \displaystyle\int {f_n \;d\mu} \lt C[/math]
Тогда [math]\displaystyle\int f \;d\mu \lt C[/math] |
Теорема Лебега о непрерывности интеграла по параметру
Теорема: |
[math]f: X \times Y \rightarrow \mathbb{R}, \forall y \int\limits_X f(x, y) d\mu(x)[/math] - имеет смысл и выполнены 2 условия:
- [math]f[/math] удовлетворяет условию [math]L_{loc}(y_0)[/math]
- [math] y \rightarrow f(x, y)[/math] - непрерывна при всех [math]x[/math]
[math]f(x, y) \rightarrow f(x, y_0)[/math] при [math]y \to y_0[/math] при всех [math]x[/math] Тогда [math]I(y) = \int\limits_X f(x, y) d\mu(x)[/math] непрерывна в [math]y_0[/math]
|
Правило Лейбница дифференцирования интеграла по параметру
Вычисление интеграла Дирихле
Теорема: |
[math]\displaystyle\int\limits_0^{+\infty} \dfrac{\sin \alpha x}{x} = \dfrac{\pi}{2} \cdot sgn(\alpha)[/math] |
Теорема о вычислении интеграла по взвешенному образу меры
Критерий плотности
Лемма о множествах вполне положительности заряда
Теорема Радона--Никодима
Теорема (Радон, Никодим): |
[math](X, \mathfrak{A}, \mu)[/math] — пространство с мерой, [math]\nu \colon \mathfrak{A} \to \mathbb R, \quad \mu, \nu[/math] — конечные меры, причём [math]\nu[/math] абсолютно непрерывна относительно [math]\mu[/math].
Тогда [math]\exists ! f[/math] — сумм. отн. [math]\mu[/math]
[math]f[/math] — плотность [math]\nu[/math] относительно [math]\mu[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Лемма: |
[math]f, g[/math] — сумм. отн. [math]\mu[/math].
[math]\forall A \in \mathfrak{A} \int_A f \, d\mu = \int_A g \, d\mu[/math] |
Хз если честно((99 |
[math]\triangleleft[/math] |
Теорема Радона--Никодима. Доказательство существования
Лемма об оценке мер образов кубов из окрестности точки дифференцируемости
Теорема о преобразовании меры при диффеоморфизме
Теорема о гладкой замене переменной в интеграле Лебега
Теорема о произведении мер
Принцип Кавальери
Теорема Тонелли
Формула для Бета-функции
Теорема Фубини
Объем шара в $\mathbb R^m$
Теорема о вычислении интеграла по мере Бореля--Стилтьеса (с леммой)
Теорема о вложении пространств L^p
Теорема: |
[math](X, \mathfrak{A}, \mu)[/math]
[math]\mu(X) \lt +\infty[/math]
- [math]1 \leqslant s \lt r \lt +\infty[/math], тогда [math]L^r \subset L^s[/math]
- [math]\| f \|_s \leqslant (\mu(X))^{\frac{1}{s} - \frac{1}{r}} \times \| f \|_r[/math]
|
Доказательство: |
[math]\triangleright[/math] |
1. Напрямую следует из 2
2. Пусть
[math] \dfrac{r}{s} = p \gt 1[/math]
[math] q = \dfrac{r}{r - s}[/math]
Тогда: [math]\| f \|^s_s = \int\limits_X |f|^s = \int\limits_X |f|^s \cdot 1 \leqslant (\int\limits_X |f|^{s \cdot \frac{r}{s}})^\frac{s}{r} \times (\int\limits_X 1^{\frac{r}{r-s}})^\frac{r-s}{r} = \| f \|_r^s \times (\mu(X))^{1-\frac{s}{r}}[/math] (По Гельдеру) |
[math]\triangleleft[/math] |
Полнота L^p
Теорема: |
[math](X, \mathfrak{A}, \mu), L^p(X)[/math] - полное [math](1 \leqslant p \lt +\infty)[/math] |
Доказательство: |
[math]\triangleright[/math] |
Ну там сложно что-то(((( |
[math]\triangleleft[/math] |
Плотность в L^p множества ступенчатых функций
Теорема: |
[math](X, \mathfrak{A}, \mu), f - [/math] ступенчатая [math] = \sum_{k=1}^{n} C_k \times[/math] [math]\chi_{Ek}[/math]
[math]X = \bigsqcup X_k[/math]
[math]\mu X (f \neq 0) -[/math] конечно
в [math]L^p(X, \mu) (1 \leqslant p \leqslant +\infty)[/math] множество ступенчатых функций плотно |
Лемма Урысона
Теорема: |
[math]F_1, F_2 - [/math] два непересекающихся замкнутых множества из [math]\mathbb{R}^m[/math]
Тогда [math]\exists f: \mathbb{R}^m \to \mathbb{R}[/math] (непрырывная)[math]: f|_{F_1}=0, f|_{F_2}=1[/math] |
Плотность в L^p непрерывных финитных функций
Теорема: |
[math]\forall p: 1 \leqslant p \lt +\infty \quad C_0[/math] всюду плотно в [math]L^p(R^m)[/math] |
Теорема о непрерывности сдвига
Теорема: |
[math]f_n(x) = f(x + h)[/math]
- [math]f[/math] - равномерно непрерывна на [math]\mathbb{R}^m \Rightarrow \displaystyle\lim_{h \to 0} \| f_n - f \|_\infty = 0[/math]
- [math]1 \leqslant p \lt +\infty \quad f \in L^p (\mathbb{R}^m) \Rightarrow \displaystyle\lim_{h \to 0} \| f_n - f \|_p = 0[/math]
- [math]f \in \widetilde{C}[0, T] \Rightarrow \displaystyle\lim_{h \to 0} \| f_n - f \|_\infty = 0[/math]
- [math]1 \leqslant p \lt +\infty \quad f \in L^p[0, T] \Rightarrow \lim_{h \to 0} \| f_n - f \|_p = 0[/math]
|
Теорема о свойствах сходимости в гильбертовом пространстве
Теорема: |
Пусть есть ГП
- [math]x_n \to x, y_n \to y \quad[/math] Тогда [math]\langle x_n, y_n\rangle \to \langle x, y \rangle[/math]
- [math]\displaystyle\sum_{n=1}^{+\infty} x_n - [/math] ряд, сходящийся в ГП. Тогда [math]\forall y \ \bigl\langle y, \sum_{n=1}^{+\infty} x_n \bigr\rangle = \displaystyle\sum_{n=1}^{+\infty} \langle y, x_n \rangle[/math]
- [math]\displaystyle\sum_{n=1}^{+\infty} x_n - [/math] ортогональный ряд. Тогда [math]\displaystyle\sum_{n=1}^{+\infty} x_n - [/math] сходится [math]\Leftrightarrow \displaystyle\sum_{n=1}^{+\infty} \| x_n \| - [/math] сходится.
|
Теорема о коэффициентах разложения по ортогональной системе
Теорема: |
[math]\mathcal{H} -[/math] ГП
[math]\{e_k\} - [/math] Ортогональная система. [math]x = \displaystyle\sum_{k=1}^{+\infty} C_k \cdot e_k[/math]
Тогда:
- [math]\{e_k\} - [/math] ЛНЗ
- [math]\dfrac{\langle x, e_k \rangle}{\|e_k\|^2} = C_k[/math]
- [math]C_k \cdot e_k - [/math] это проекция [math]X[/math] на 1-номерное подпространство, порождённое [math]e_k[/math].
- [math] x = C_k \cdot e_k + z \Rightarrow z \perp e_k [/math]
|
Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя
Теорема: |
[math]\{e_k\} - [/math] Ортогональная система в [math]\mathcal{H}, x \in \mathcal{H}[/math]
[math]S_n = \displaystyle\sum_{k=1}^{n} C_k (x) \cdot e_k - [/math] частичные суммы ряда Фурье
[math]\alpha_n := \operatorname{Lin}(e_1, \dotsc, e_n)[/math]
Тогда:
- [math]S_n - [/math] проекция [math]x[/math] на [math]\alpha_n[/math]
- [math]S_n - [/math] элемент наилучшего приближения (в [math]\alpha_n[/math]) для [math]x[/math]
[math]\| x - S_n \| = \inf_{y \in \alpha_n} {\|x - y} \|[/math]
- [math]\| S_n \| \leqslant \| x \|[/math]
Следствие:
[math]\displaystyle\sum |C_k(x)|^2 \times \| e_k \|^2 \leqslant \|x\|^2[/math] |
Теорема Рисса -- Фишера о сумме ряда Фурье. Равенство Парсеваля
Теорема: |
[math]\{e_k\} - [/math] Ортогональная система в [math]\mathcal{H}, x \in \mathcal{H}[/math]
- Ряд Фурье [math]x[/math] сходится в [math]\mathcal{H}[/math]
- [math]x = \displaystyle\sum_{k=1}^{+\infty} C_k(x) \cdot e_k + z, [/math] тогда [math]\forall k \quad z \perp e_k[/math]
- [math]x = \displaystyle\sum_{k=1}^{+\infty} C_k(x) \times e_k \Leftrightarrow \displaystyle\sum_{k=1}^{+\infty} |C_k (x)|^2 \cdot \|e_k\|=\|x\|^2[/math] (Равенство Парсеваля)
|
Теорема о характеристике базиса
Теорема: |
[math]\{e_k\}[/math] — ОС в [math]H[/math]. Тогда экв.:
- [math]\{e_k\}[/math] — базис
- Выполняется обобщённое уравнение замкнутости: [math]\langle x, y \rangle = \sum\limits_{k=1}^{+\infty} e_k(x) \overline{c_k(y))} \|e_k\|^2[/math]
- [math]\{e_k\}[/math] — замкнута
- [math]\{e_k\}[/math] — полная
- [math]Lin(e_1 e_2 \dots)[/math] — плотно в [math]H[/math]
|
Лемма о вычислении коэффициентов тригонометрического ряда
Теорема: |
[math]T(x) - [/math] тригонометрический ряд, [math]\quad S_n(x) - [/math] частичные суммы
Пусть [math]\exists f \in L^1[-\pi,\pi] \quad S_n \to f [/math] в пространстве [math]L^1[/math]
Тогда:
- [math]a_k = \dfrac{1}{\pi} \cdot \displaystyle\int_{-\pi}^{\pi} {f(x) \cdot \cos {kx} \;dx}[/math]
- [math]b_k = \dfrac{1}{\pi} \cdot \displaystyle\int_{-\pi}^{\pi} {f(x) \cdot \sin {kx} \;dx}[/math]
- [math]c_k = \dfrac{1}{2 \pi} \cdot \displaystyle\int_{-\pi}^{\pi} {f(x) \cdot e^{-ikx} \;dx}[/math]
|
Теорема Римана--Лебега
Теорема: |
[math]E \in \mathbb{R} - [/math] измеримо, [math]f \in L^1(E)[/math]
Тогда [math]\int\limits_E {f(x) \times e^{ikx} \times dx} \to_{k \to \infty} 0[/math] (То же самое можно и с [math]\cos {x}[/math] и [math]\sin {x}[/math] вместо [math]e^{ikx}[/math]) |
Принцип локализации Римана
Теорема: |
[math]f, g \in L^1[-\pi, \pi] \quad x_0 \in [-\pi, \pi] \quad \exists \delta \gt 0[/math]
[math]f(x) = g(x) [/math] при [math] x \in (x_0 - \delta, x_0 + \delta)[/math]
Тогда [math]S_n(f, x_0) - S_n(g, x_0) \xrightarrow[n \to +\infty]{} 0[/math] |
Признак Дини. Следствия
Теорема: |
[math]f \in L^1[-\pi, \pi] \quad x_0 \in [-\pi, \pi] \quad S \in \mathbb{R}[/math]
Пусть [math]\int\limits_0^\pi \dfrac{|f(x_0+t)+f(x_0-t)-2S|}{t} \times dt \lt +\infty [/math]
Тогда [math]S_n(f, x_0) \to_{n \to +\infty} S[/math] |
Корректность определения свертки
Свойства свертки функции из L^p с функцией из L^q
Теорема: |
[math]f \in L^p \quad k \in L^q[-\pi, \pi] \quad \left(\dfrac{1}{p} + \dfrac{1}{q} = 1 \right) \quad 1 \leqslant p \lt +\infty[/math]
Тогда [math]f * k[/math] - непрерывна на [math][-\pi, \pi][/math]
[math]\|f * k \|_1 \leqslant \|f\|_p * \|k\|_q[/math] |
Теорема о свойствах аппроксимативной единицы
Теорема: |
[math]K_n - [/math] апроксимативная единица
Тогда [math](h \to h_0)[/math]:
- [math]f \in \tilde{C}[-\pi, \pi] \quad f * K_n \rightrightarrows_{h \to h_0} f[/math]
- [math]f \in L^p[-\pi, \pi] \quad \|f * K_n - f \|_p \to 0, h \to 0[/math]
- [math]f \in L^1, f - [/math] непр. [math]x_0 \quad K_n - [/math] ??? а.е.
[math]f * K_n - [/math] непрерывна в окрестности [math]x_0[/math]
[math](f * K_n)(x_0) \to_{h \to h_0} f(x_0)[/math] |
Теорема Коши о перманентности метода средних арифметических
Теорема Фейера
Теорема: |
3 пункта:
- [math] f \in \tilde{C}[-\pi, \pi] \Rightarrow \sigma_n(f, x) \rightrightarrows_{n \to \infty} f(x)[/math]
- [math] f \in L^p[-\pi, \pi] \Rightarrow \|\sigma_n(f, x) - f \|_p \to_{n \to \infty} 0[/math]
- [math] f \in L^1, f - [/math] непр. [math] x \Rightarrow \sigma_n(f, x) \to_{n \to \infty} f(x)[/math]
|
Полнота тригонометрической системы
Теорема: |
Тригонометрическая система полна в [math]L^2[/math] (Следствие теоремы Фейера) |
Формула Грина
Формула Стокса
Формула Гаусса--Остроградского
Бескоординатное определение ротора
Бескоординатное определение дивергенции
Описание соленоидальных полей в терминах дивергенции