Турниры
Определение: |
Турнир (англ. Tournament) — ориентированный граф, между любой парой различных вершин которого есть ровно одно ориентированное ребро. |
Имя турнир исходит из графической интерпретации исходов кругового турнира, в котором каждый игрок встречается в схватке с каждым другим игроком ровно раз, и в котором не может быть ничьих. В орграфе турнира вершины соответствуют игрокам. Дуга между каждой парой игроков ориентирована от выигравшего к проигравшему. Если игрок побеждает игрока , то говорят, что доминирует над .
Оценка количества турниров в графе
Если в турнире опустить ориентацию ребер, то мы получим полный граф. А так как существует два варианта ориентации каждого ребра, то количество турниров в графе из
вершин равно .Транзитивность
Турнир, в котором
, называется транзитивным. В транзитивном турнире вершины могут быть полностью упорядочены в порядке достижимости.Следующие утверждения для турнира с n вершинами эквивалентны:
- транзитивен.
- ацикличен.
- не содержит циклов длины 3.
- Последовательность числа выигрышей (множество полуисходов) есть .
- содержит ровно один гамильтонов путь.
Транзитивные турниры играют существенную роль в теории Рамсея, изучающей условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок. В частности, любой турнир с
Парадоксальные турниры
Игрок, выигравший все игры, естественно, будет победителем турнира. Однако, как показывает существование нетранзитивных турниров, такого игрока может не оказаться. Турнир, в котором каждый игрок проигрывает хотя бы одну игру называется 1-парадоксальным турниром. Обобщая, Турнир
называется -парадоксальным, если для любого -элементного подмножества множества существует вершина в , такая что для всех .Конденсация
Конденсация любого турнира является транзитивным турниром. Таким образом, даже если турнир не является транзитивным, сильно связанные компоненты турнира могут быть полностью упорядочены.
Сильно связные турниры
Определение: |
Турнир называется сильно связным, если из любой вершины существуют пути до всех других. |
Определение: |
Турнир называется гамильтоновым, если он содержит гамильтонов цикл. |
Не все турниры гамильтоновы. Определение не исключает существование вершины с или равной нулю — в первую нельзя войти, а из второй — выйти. Однако отсутствие таких вершин не означает, что турнир гамильтонов (пример — на рисунке справа).
Теорема Редеи-Камиона устанавливает 2 следующих факта:
- Все турниры полугамильтоновы.
- Турнир гамильтонов тогда и только тогда, когда он сильно связен.
См. также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — ISBN 5-93972-076-5