Ксе к

Материал из Викиконспекты
Перейти к: навигация, поиск

Представим банку, заполненную хим акт жидкостью, а может твердое тело, перемешаны хим реагенты, которые способны взаимод друг с другом. Одну из стенок банки начинают прогревать (поддерживая температуру стенки [math]T_w[/math]). При нагревании происходит хим реакция. Эта хим реакция удовлетворяет 2 свойствам:

  1. скорость реакции "сильно" увеличивается с температурой
  2. происходит "сильное" выделение тепла этой реакции

Исходная смесь имеет температуру [math]T_0[/math] (при которой скорость реакции очень маленькая). Начинаем стеночку прогревать, тепло передается близлежащим слоям смесей, нагреваются, так как скорость реакции увеличивается с температурой, в них начинает происходить реакция. Как только пошла, начинается выделение собственного тепла реакции. Это тепло передается след слоям, они тоже прогреваются и тд. При некоторых условиях формируется тепловой фронт химической реакции. (РИСУНОК распределение температуры, ось z, хим волна реакции).
[math]Tm = T_0 + \frac{Q}{C}[/math]
, где
[math]T_m[/math] температура адиабатического прохождения реакции, когда все тепло реакции на нагрев смеси
[math]Q[/math] - тепловой эффект хим реакции
[math]C[/math] - теплоемкость

  • Как ведет концентрация реагентов?

начальный реагент A -> B (в продукт B) (в чем мер концентрация = отношение плотности вещества к полной плотности смеси [math]x = \frac {\rho_A} {\rho_A + \rho_B} [/math] , [math]0 \leq x \leq 1[/math])

Перед фронтом когда один реагент концентрация = 1. После фронта асимтотически выходит на 0.

  • Как ведет себя скорость?

Дает очень узкий пик в какой-то малой зоне. Перед зоной скорость реакции мала, так как температура мала, а после мала, так как реагент скушался. Расчеты показывают, что это очень узкий пик.

Например, как инициировать фронт? Допустим, устанавливаем температуру стенки [math]T_w[/math]; если [math]T_w = T_m[/math], то волна без проблем идет, если меньше, то существует критическое значение [math]T^*[/math] для инициирования волны. Тогда

  • [math] T_w \lesssim T^* \le T_m [/math] - нет "поджига" (т.е. волна не начинается, инертный прогрев)
  • [math] T^* \lesssim T_w \le T_m [/math] - "поджиг" с задержкой
  • [math] T_m \le T_w [/math] - быстрый "поджиг" (мнгновенно)

Когда волна отходит, она забывает об начальном условии. Влияние другой стенки и тп. При определенном соотношении параметров, которые характеризуют эту волну, она может терять устойчивость. Что происходит после потери? Если теряет в одномерной моде (?) то есть сохраняет свою плоскую структуру, то формирются другие устойчивые режимы, например колебательные, то есть волна движется, то ускоряясь, то замедляясь; дальше может произойти бифуркация, и воникнуть 2х периодические колебание, то есть делает такие колебания с большим периодом и маленьким. И при определенном наборе параметров возникает хаотическое поведение, волна, сохраняя плоскую форму, распространяется колебательно, но вообще не периодически, поведение похоже на хаотическое. Пример динамического хаоса: поведение похоже на хаос, но описывается детерминированной закономерностью. Не плоская волна? Если плоская задача, может возникнуть 2 очага. (РИСУНКИ) Если 3д, то очаги(2шт) по спирали двигаются в одну сторону. Могут распасться на несколько очагов - спиновая волна. Всякие чудеса

Совершенно детерминир система - такое сложное поведение =)


' КАК МОДЕЛИРОВАТЬ '

D одномерном случае ситема опис 2мя функциями:

  • x(t, z) - кончентрация , температура T(t, z)

[math]\left\{ \begin{matrix} \frac {\partial x} {\partial t} - D \frac{\partial^2 x}{\partial t^2} = W(x, T) \\ C \frac {\partial T}{\partial t} - \lambda \frac{\partial^2 T}{\partial z^2} = - \rho Q W (x,T)\end{matrix} \right.[/math] [1] D - коэффициет диффузии

первое - уравнение диффузии. справа скорость хим реакции [math]W(x, T) = - K x^a exp ( - \frac{E}{R T})[/math]

K - константа скорости реакции. К, а - порядок реакции, Е - енергия активациии - константы

Что такое переход из вещ А в В (РИСУНКО енергия связи, барьер.) То есть чтобы проихощла рекция необходимо преодолеть молек барьер. Экспонента формуле показывает, какая часть модекул больше барьера

Надо решуть ту систему уравнений. Граничные условия.

[math]x|_{z = 0} = 0[/math]

[math]T|_{z = 0} = T_w[/math] - темпер стенки

[math]\frac {\partial x} {\partial z} |_{z = l} = 0, \frac {\partial T} {\partial z} |_{z = l} = 0[/math] На самом деле все это не важно услоивя на дальнем конце, пока фронт не подойдет к ней.

Начальные условия

[math]x|_{t = 0} = \left\{ \begin{matrix} 1, z \ne 0 \\ 0, z = 0\end{matrix} \right.[/math]


[math]T|_{t = 0} = \left\{ \begin{matrix} T_0, z \ne 0 \\ T_w, z = 0\end{matrix} \right.[/math]

с вер 99 рпоцентов не получится, надо представлять структуру того, что происходит. То есть нельзя формально применять методы, должен быт предварительный физ анализ. Поэтому нужны оценки

Лценки:

Характерная величинаа скорости фронта для случая когда, порядок реакции а = 1

[math]U \sim [\frac{2 K \lambda}{Q \rho \triangle T} (\frac{R T m^2}{E})^2 e^{-\frac{E}{R T m}}] ^ {1/2}[/math]

К - конст реакции, [math]\triangle T[/math] - насколько среда прогревается, [math]\lambda[/math] - коэффициент теплопроводности Q - топловой эффект реакции

[math]\triangle T = T_m - T_0 = \frac{Q}{C}[/math]

T_m - ьемпература адиабатического прохожденя реакции, то есть насколько прогрелась

По структуре фронта (ГРАФИКИ структура фронта) есть сравнительно широкая зона подогрева [math]\delta_t[/math] и сравнительно узкая зна реакции [math]\delta_r[/math]. То есть температура увелич в сравнительно широкой облачти, а реакция контертруется в более узкой зоне.

[math]\delta_T \sim \frac {\varkappa}{U} = \frac{\lambda}{p c U}[/math], [math]\varkappa[/math]- коэфф темепературопроводности

диффузионный масштаб (может не совпадать с тепловым) [math]\delta_D \sim D/U [/math] D - коэфф диффузии

[math]\delta_r \sim \delta_T \beta[/math] ??

[math]\beta =\frac{R T_m}{E} \ll 1[/math] - условние "сильной " зависимости скор реакц от темпертуры

[math]\gamma = \frac{R T_m^2}{E \triangle T} = \frac{R T_m^2}{E (T_m - T_0)} = \frac{R T_m^2 c}{E Q} \ll 1[/math] - условие "сильной" экзотермичности реакии

Кау подбирать шаги по времени? должны разрешить наименьший физ масштаб. нужно чтобы

  1. на [math]\delta_r[/math] укладывалось хотя юы несколько пространственных шагов ,
  2. [math] \triangle z\lesssim \delta_r[/math],
  3. [math]\delta_T \ll l [/math] l - разсер области, то еть чтоб фрон поместился.

Предже всего получить обычный фронт, потом варьируя параметры залезть за критичсекие режимы. Что способствует переходу за крит режимы: D↓, K↑, и одновременно (K↑, Е↑ таким образом что [math]K e^{-\frac{E}{l t m}} = const [/math])

(*)Для желающих 2мерную задачу.

Параметры:

[math]K = 1.6 \cdot 10^6 [/math] 1 /c константа скорости реакции

[math]E = 8 \cdot 10^4 [/math] Дж/Моль энергия активации

[math]R = 8.314 [/math] Дж/(Моль * К)

[math]a = 0..2[/math] - порядок реакции. лучше начинать с 1

[math]Q =7 \cdot 10^5 [/math] Дж/кг тепловой эффект реакции

[math]\rho = 830 [/math] кг / м^3

[math]T_0 = 293[/math] K

[math]C = 1980[/math] Дж/(кг * K) теплоемкость

[math]\lambda = 1.13 [/math] Дж/(м * с * К) теплопроводность

[math]D \sim 8 \cdot 10^{-12}[/math] м^2/c коэффиц диффуз. Диффузия в жидк и твердых телах очень маленькая. для начала не реальную юрать D, а звять не физ значение а такое, что число Льюиса [math]L_e = \frac{D}{\varkappa} = \frac{D \rho C} {\lambda} = 1[/math]. Это даст ситуацию подобия уравнений переноса тепла и переноса массы.

"Препроцессинг" - интерактивный ввод параметров физических и вычислительных(шаги колво шагов...)

"Процессор" - солвер

"Постпроцессор" - визуализация. Температура, концентрация, W скорость реакции. (интересно - анимация, прям волна бежит)


Возможные альтернативные варианты формул:

  1. У меня немного по-другому 2-ое уравнение: [math] \rho C \frac {\partial T}{\partial t} - \lambda \frac{\partial^2 T}{\partial z^2} = - \rho Q W (x,T) [/math]