Декартово дерево
Эта статья про курево
Декартово дерево или дерамида (англ. Treap) — это структура данных, объединяющая в себе бинарное дерево поиска и бинарную кучу (отсюда и второе её название: treap (tree + heap) и дерамида (дерево + пирамида), также существует название курево (куча + дерево).
Более строго, это бинарное дерево, в узлах которого хранится пары
, где — это ключ, а — это приоритет. Также оно является двоичным деревом поиска по и пирамидой по . Предполагая, что все и все являются различными, получаем, что если некоторый элемент дерева содержит , то у всех элементов в левом поддереве , у всех элементов в правом поддереве , а также и в левом, и в правом поддереве имеем: .Дерамиды были предложены Сиделем (Siedel) и Арагоном (Aragon) в 1996 г.
Операции в декартовом дереве
split
Операция
(разрезать) позволяет сделать следующее, разрезать исходное дерево по ключу . Возвращать она будет такую пару деревьев , что в дереве ключи меньше , а в дереве все остальные: .Эта операция устроена следующим образом.
Рассмотрим случай, в котором требуется разрезать дерево по ключу, большему ключа корня. Посмотрим, как будут устроены результирующие деревья
и :- : левое поддерево совпадёт с левым поддеревом . Для нахождения правого поддерева , нужно разрезать правое поддерево на и по ключу и взять .
- совпадёт с .
Случай, в котором требуется разрезать дерево по ключу, меньше либо равному ключа в корне, рассматривается симметрично.
Псевдокод
Treap, Treap split(t: Treap, k: int): if t == return , else if k > t.x t1, t2 = split(t.right, k) t.right = t1 return t, t2 else t1, t2 = split(t.left, k) t.left = t2 return t1, t
Время работы
Оценим время работы операции
. Во время выполнения вызывается одна операция для дерева хотя бы на один меньшей высоты и делается ещё операций. Тогда итоговая трудоёмкость этой операции равна , где — высота дерева.merge
Рассмотрим вторую операцию с декартовыми деревьями —
(слить).С помощью этой операции можно слить два декартовых дерева в одно. Причем, все ключи в первом(левом) дереве должны быть меньше, чем ключи во втором(правом). В результате получается дерево, в котором есть все ключи из первого и второго деревьев:
Рассмотрим принцип работы этой операции. Пусть нужно слить деревья
и . Тогда, очевидно, у результирующего дерева есть корень. Корнем станет вершина из или с наибольшим приоритетом . Но вершина с самым большим из всех вершин деревьев и может быть только либо корнем , либо корнем . Рассмотрим случай, в котором корень имеет больший , чем корень . Случай, в котором корень имеет больший , чем корень , симметричен этому.Если
корня больше корня , то он и будет являться корнем. Тогда левое поддерево совпадёт с левым поддеревом . Справа же нужно подвесить объединение правого поддерева и дерева .Псевдокод
Treap merge(t1: Treap, t2: Treap): if t1 ==or t2 == return t2 == ? t1 : t2 else if t1.y > t2.y t1.right = merge(t1.right, t2) return t1 else t2.left = merge(t1, t2.left) return t2
Время работы
Рассуждая аналогично операции
приходим к выводу, что трудоёмкость операции равна , где — высота дерева.insert
Операция
добавляет в дерево элемент , где — ключ, а — приоритет.Представим что элемент
, это декартово дерево из одного элемента, и для того чтобы его добавить в наше декартово дерево , очевидно, нам нужно их слить. Но может содержать ключи как меньше, так и больше ключа , поэтому сначала нужно разрезать по ключу .- Реализация №1
- Разобьём наше дерево по ключу, который мы хотим добавить, то есть .
- Сливаем первое дерево с новым элементом, то есть .
- Сливаем получившиеся дерево со вторым, то есть .
- Реализация №2
- Сначала спускаемся по дереву (как в обычном бинарном дереве поиска по ), но останавливаемся на первом элементе, в котором значение приоритета оказалось меньше .
- Теперь вызываем от найденного элемента (от элемента вместе со всем его поддеревом)
- Полученные и записываем в качестве левого и правого сына добавляемого элемента.
- Полученное дерево ставим на место элемента, найденного в первом пункте.
В первой реализации два раза используется
, а во второй реализации слияние вообще не используется.remove
Операция
удаляет из дерева элемент с ключом .- Реализация №1
- Разобьём наше дерево по ключу, который мы хотим удалить, то есть .
- Теперь отделяем от первого дерева элемент , опять таки разбивая по ключу , то есть .
- Сливаем первое дерево со вторым, то есть .
- Реализация №2
- Спускаемся по дереву (как в обычном бинарном дереве поиска по ), и ищем удаляемый элемент.
- Найдя элемент, вызываем его левого и правого сыновей
- Результат процедуры ставим на место удаляемого элемента.
В первой реализации два раза используется
, а во второй реализации разрезание вообще не используется.Построение декартова дерева
Пусть нам известно из каких пар
требуется построить декартово дерево, причем также известно, что .Алгоритм за
Отсортируем все приоритеты по убыванию за
и выберем первый из них, пусть это будет . Сделаем корнем дерева. Проделав то же самое с остальными вершинами получим левого и правого сына . В среднем высота Декартова дерева (см. далее) и на каждом уровне мы сделали операций. Значит такой алгоритм работает за .Алгоритм за O(n)
Будем строить дерево слева направо, то есть начиная с двоичное дерево поиска. При добавлении , пытаемся сделать его правым сыном , это следует сделать если , иначе делаем шаг к предку последнего элемента и смотрим его значение . Поднимаемся до тех пор, пока приоритет в рассматриваемом элементе меньше приоритета в добавляемом, после чего делаем его правым сыном, а предыдущего правого сына делаем левым сыном .
по , при этом помнить последний добавленный элемент . Он будет самым правым, так как у него будет максимальный ключ, а по ключам декартово дерево представляет собойЗаметим, что каждую вершину мы посетим максимум дважды: при непосредственном добавлении и, поднимаясь вверх (ведь после этого вершина будет лежать в чьем-то левом поддереве, а мы поднимаемся только по правому). Из этого следует, что построение происходит за
.Случайные приоритеты
Мы уже выяснили, что сложность операций с декартовым деревом линейно зависит от его высоты. В действительности высота декартова дерева может быть линейной относительно его размеров. Например, высота декартова дерева, построенного по набору ключей
, будет равна . Во избежание таких случаев, полезным оказывается выбирать приоритеты в ключах случайно.Высота в декартовом дереве с случайными приоритетами
Теорема: | ||||||
В декартовом дереве из случайными величинами c равномерным распределением, средняя глубина вершины . узлов, приоритеты которого являются | ||||||
Доказательство: | ||||||
Будем считать, что все выбранные приоритеты попарно различны.Для начала введем несколько обозначений:
В силу обозначений глубину вершины можно записать как количество предков:
Теперь можно выразить математическое ожидание глубины конкретной вершины:
Для подсчёта средней глубины вершин нам нужно сосчитать вероятность того, что вершина является предком вершины , то есть .Введем новое обозначение:
Так как распределение приоритетов равномерное, каждая вершина среди может иметь максимальный приоритет, мы немедленно приходим к следующему равенству:Подставив последнее в нашу формулу с математическим ожиданием получим: (здесь мы использовали неравенство )
| ||||||
Таким образом, среднее время работы операций
и будет .