Материал из Викиконспекты
Пусть [math] P = (p_1,p_2,\dots,p_n)[/math] является перестановкой чисел [math] 1, 2,\dots, n[/math].
Определение: |
Инверсией в перестановке [math]P[/math] называется всякая пара индексов [math]i, j[/math] такая, что [math]1\leqslant i\lt j\leqslant n[/math] и [math]P[i]\gt P[j][/math]. |
Определение: |
Таблицей инверсий перестановки [math] P [/math] называют такую последовательность [math] T = (t_1,t_2,\dots,t_n)[/math], в которой [math]t_i[/math] равно числу элементов перестановки [math] P [/math], стоящих в [math] P [/math] левее числа [math]i[/math] и больших [math]i[/math]. |
Получение таблицы инверсии из таблицы перестановки
[5 9 1 8 2 6 4 7 3] - т. перестановки
[ 0]
[ 1 0]
[ 2 1 0]
[ 2 2 1 0]
[ 0 2 2 1 0]
[ 4 0 2 2 1 0]
[ 6 4 0 2 2 1 0]
[ 3 6 4 0 2 2 1 0]
[2 3 6 4 0 2 2 1 0] - т. инверсии
|
Получение таблицы перестановки из таблицы инверсии
[2 3 6 4 0 2 2 1 0] - т. инверсии
[9]
[9 8]
[9 8 7]
[9 8 6 7]
[5 9 8 6 7]
[5 9 8 6 4 7]
[5 9 8 6 4 7 3]
[5 9 8 2 6 4 7 3]
[5 9 1 8 2 6 4 7 3] - т. перестановки
|
Алгоритм построения
Для получения таблицы инверсий из таблицы перестановки вводим таблицу равной по длине таблице перестановки(не умаляя общности длина равна n) и на n-ное место записываем 0; ищем число i(от n-1 до 1) в таблице перестановки, и смотрим: сколько чисел больше i находится слева от числа i, полученное число записываем в таблицу инверсий на i-тое место.
Алгоритм восстановления
Для восстановления таблицы перестановки из таблицы инверсий(не умаляя общности длина таблицы равна n) создаем таблицу, которую будем расширять, по мере добавления в неё чисел, добавляем в эту таблицу число i(где i от n до 1) на позицию k+1, где k - число в таблице инверсий на i-том месте.