Opi1sumu
Задача: |
Дано | одинаковых станков, которые работают параллельно и работ, котороые необходимо выполнить в произвольном порядке на всех станках. Время выполнения каждой работы на любом станке одинаково и равно одному. Для каждой работы известно время, до которого её необходимо выполнить. Необходимо успеть выполнить как можно больше работ.
Алгоритм
Описание алгоритма
Отсортируем работы в порядке невозрастания дедлайнов.
Доказательство корректности
Теорема: |
Если в оптимальном расписании можно сделать работ, то можно сделать первые работ. |
Доказательство: |
Пусть в оптимальном расписании были сделаны работы Тогда, если заменить во всём расписании работу . Докажем, что существует оптимальное расписание, в котором сделаны работы . Пусть работы тоже отсортированы в порядке неубывания дедлайна. Тогда . на работу , то она, тем более, будет выполнена. |
Определение: |
Обозначим за тайм-слот t множество из не более, чем | различных чисел — номера работ, которые мы хотим выполнить в момент времени .
Введем тайм-слот для каждого момента времени от до .
Каждую работу будем пытаться сделать как можно позже. Будем рассматривать работы в порядке невозрастания дедлайнов.
-ю работу попытаемся добавить в тайм-слоты с номерами от по .
После добавления некоторые тайм-слоты могли переполниться (тайм-слот переполнился, если в нём уже находилось
работ, и в него добавили -ю).
Для переполнившегося тайм-слота найдём найдем самый правый левее него тайм-слот, который ещё не переполнился и перекинем работу,
которой там еще нет, в него. Так как в нем меньше элементов, то по принципу Дирихле, это можно сделать.
Утверждение: |
Следуя этому алгоритму, расписания не существует тогда и только тогда, когда
переполнился нулевой тайм-слот. |
Расписания не существует, а значит, никакой алгоритм его не найдет.
Введем понятие фронта расписания. Фронтом назовем вектор размеров тайм-слотов. Заметим, что от того, в каком порядке происходят перебрасывания из переполнившихся тайм-слотов, итоговый фронт не зависит. Поэтому, если мы сначала положим все работы в тайм-слоты, игнорируя ограничение на их размер, а потом в каком-то порядке перекинем, итоговый фронт окажется тем же. В случае, если при построении тайм-слотов игнорировалось ограничение на их размер, ни одну единицу работы нельзя назначить позже. Будем также рассматривать тайм-слоты без номеров работ: в каждом тайм-слоте просто лежит сколько-то единиц работ. От этого итоговый фронт также не изменится. Заметим, что если нельзя составить корректную в плане наполненности конфигурацию тайм-слотов при данном ослаблении, то нельзя это сделать и в случае существования номера у каждой единицы работы. Будем рассматривать тайм-слоты по убыванию времени с до . В каждый момент времени будем хранить сколько работ необходимо перекинуть на более ранние тайм-слоты. Изначально это число равно нулю.Рассмотрим очередной тайм-слот. Пусть в нем занято ячеек из , а также есть еще нераспределяемых позже единиц работы. Здесь возможны два случая:
|
Опираясь на это утверждение, можно найти максимальное количество работ, которое можно выполнить. Обозначим его за
.Сведем задачу построения распинания по построенным тайм-слотам к задаче о покрытии двудольного графа минимальным количеством паросочетаний.
Построим двудольный граф. В левой доле вершинам будут соответствовать работы, в правой — времена. Соответственно, в левой доле будет
вершин, в правой — . Ребро между работой и временем будет, если работа есть в тайм-слоте .Рассмотрим какое-то паросочетание
в этом графе. Оно соответствует корректному расписанию работ на одной машине: ни одна работа не выполняется два раза и ни в один момент времени не выполняется более одной работы.Тогда, если мы сможем построить множество мощности
такое, что каждое ребро находится хотя бы в одном из паросочетаний, то оно будет соответствовать тому, что каждая работа обработана на каждом станке, а значит, составлено корректное расписание для этих работ.Достроим граф до регулярного степени
. Достраивать будем следующим образом. Каждая вершина в левой доле имеет степень , так как каждая работа представлена в тайм-слотах. В правой доле степень каждой вершины не больше , так как в тайм-слоте не может быть больше, чем работ. Значит, в левой доле не больше вершин, чем в правой. Добавим в левую долю фиктивных вершин, чтобы количества вершин в левой и правой долях сравнялись. После чего просто будем добавлять ребра между вершинами, степень которых еще меньше . Для покрытия этого графа паросочетаниями воспользуемся тем фактом, что регулярный двудольный граф степени можно покрыть паросочетаниями.При помощи построения паросочетаний было построено расписание для тех
работ, которые можно успеть сделать. Так как остальные работы уже нельзя успеть, расписание для них можно составить произвольное. Например, выполнять их по очереди после выполнения первых работ.Оценка сложности алгоритма
Рассмотрим добавление очередной работы в тайм-слоты. За
найдём переполнившийся тайм-слот и за перекинем из него элемент. Так как , итоговая сложность этой части — .Достроение графа до регулярного делается за
, где — количество ребер в нем. Количество ребер в регулярном двудольном графе , где — количество вершин в одной из долей, а — степень. Количество вершин в правой доле — . Значит граф будет построен за , так как степень каждой вершины — .Сложность последней фазы зависит от того, каким алгоритмом граф разбивается на паросочетания. Использовав, например, алгоритм Куна, можно добиться сложности
. Итоговая сложность алгоритма — .Источники информации
- Peter Brucker «Scheduling Algorithms», fifth edition, Springer — с. 179 ISBN 978-3-540-69515-8