QpmtnSumCi
Задача: |
Дано | станков с разной скоростью выполнения работ и работ с заданным временем выполнения . Работы можно прерывать и продолжать их выполнение на другом станке. Необходимо построить такое расписание, чтобы суммарное время окончания всех работ было минимальным.
Описание алгоритма
Идея
Для решения применим правило SRPT-FM (Shortest Remaining Processing Time on Fastest Machine), которое предлагает класть работу с наименьшим оставшемся временем обработки на самый быстрый доступный станок. Отсортируем работы по времени обработки в невозрастающем порядке так, что
. Отсортируем станки по скорости обработки в невозрастающем порядке, так чтобы . Далее назначаем -ю работу на станок (1-й по скорости станок) на время , то есть пока она полностью не выполнится. Теперь назначим работу сначала станок на время , а затем на время от до на станок , пока она не завершится. С работой поступаем аналогично, сначала она времени выполняется на станке , затем времени на станке , и, начиная с до , на станке . Также поступаем со всеми оставшимися работами.Псевдокод
function scheduling(p: int[n], v: int[n]) -> (int, int, int)[m]
int a = 0
(int, int, int)[] ans // сюда будет записываться ответ
sort(p) // сортируем времена обработки работ в невозрастающем порядке
sort(v) // сортируем скорости обработки станков в невозрастающем порядке
while p[1] > 0
Находим наибольший i такой, что p[i] > 0
int t = p[i] / v[1]
for j = i downto k = max(1, i - m + 1)
ans[1 + i - j].push(a, a + t, j) // Назначаем работу j на станок
на время от a до a + t
p[j] = p[j] - t * v[1 + i - j]
a = a + t
return ans
Асимптотика
Сначала мы сортируем работы и станки, что занимает
и . Так как при , самых медленных станков можно не использовать, то в итоге сортировка займет . Количество прерываний ограничено числом . В итоге всё вместе составляет асимптотику алгоритма .Доказательство корректности алгоритма
Лемма: |
Существует оптимальное расписание, в котором , когда , для всех и . |
Доказательство: |
Рассмотрим расписание , где для некоторых и верно, что , но . С помощью обмена частей обработки, полученной работами и , мы можем изменить расписание , получив новое оптимальное расписание , где обработка работ и завершается во времена и соответственно, при этом время завершения обработки остальных работ остается прежним. Тот факт, что в расписании работа заканчивается раньше , при этом не нарушая оптимальности расписания, свидетельствует о существовании расписания, описанного в условии леммы.Для построения расписания из расписания введем следующие обозначения:
Далее существуют два случая:
|
Теорема: |
Расписание, построенное по принципу SRPT-FM, оптимальное для задачи . |
Доказательство: |
Без потери общности будем предполагать, что количество станков равно количеству работ . Если , то добавим станков с нулевой скоростью обработки, если , то удалим самых медленных станков.Пусть у нас есть расписание, построенное по правилу SRPT-FM, тогда . Следовательно, верны следующие равенства:Проведем математические преобразования и получим следующие равенства: Пусть оптимальное расписание, по предыдущей лемме верно, что . Самая короткая работа не может быть выполнена раньше, чем . Таким образом илиТак как работы и выполнены к моменту и соответственно, то максимальное количество обработки, полученной этими работами составляетИз чего следует, что Продолжая в том же духе можно показать, что В итоге получаем следующие неравенства Если существует такой набор положительных чисел , что умножение -го неравенства на и сложение всех неравенств будет давать неравенство , тогда теорема будет доказана. Можно показать, что должны удовлетворять следующим равенствам |
См. также
Источники информации
- Peter Brucker «Scheduling Algorithms», fifth edition, Springer — с. 134-135 ISBN 978-3-540-69515-8
- Dimitrios G. Pandelis "Optimal preemptive scheduling on uniform machines with discounted flowtime objectives" — с. 631-632
- M.L. Pinedo "Parallel Machine Models (Deterministic)" — с.135-136