Специальные формы КНФ
Рассмотрим две формы, с помощью которых можно представить формулы, заданные в конъюнктивной нормальной форме, то есть имеющей вид конъюнкции выражений в скобках, каждое из которых представляет собой дизъюнкцию одного или нескольких литералов. Эти две формы интересны тем, что для них существует алгоритм, который может за полиномиальное время проверить, существует ли набор аргументов, на которых данная функция будет принимать значение , в то время, как для обычной функции, не представленной данной формой, эта задача является NP-полной.
КНФ в форме Крома
Определение: |
Конъюнктивная нормальная форма (КНФ) в форме Крома (2-КНФ) (англ. 2-CNF) — это конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию нескольких литералов, количество которых не превышает двух. |
Пример :
Утверждение: |
Утверждение: |
Функцию можно задать в форме Крома выполнено следующее следствие: |
КНФ в форме Хорна
Определение: |
Конъюнктивная нормальная форма (КНФ)в форме Хорна (англ. Horn clause) — это конъюнкция выражений в скобках, каждое из которых представляет собой дизъюнкцию литералов, в которой присутствует не более одного литерала без отрицания. |
Пример:
Каждая скобка представляет собой Дизъюнкт Хорна[1].
Любую формулу можно представить в виде КНФ в форме Хорна. Для этого формулу необходимо преобразовать в конъюнкцию элементарных дизъюнкций и далее каждую дизъюнкцию представить в форме дизьюнкта Хорна.
Утверждение: |
Существует алгоритм, который за полиномиальное время проверяет, что функцию, заданную в форме Хорна можно удовлетворить. |
Далее будет приведено доказательство, предлагающее алгоритм решения.
Найдем в данной формуле одиночно стоящие переменные. Например, для формулы такой переменной является . Присвоим всем таким переменным значение , если переменная входит без отрицания и иначе, так как в конъюнкции они должны дать . Заметим, что если какая-либо скобка после этого обратилась в , то решения не существует.Если одиночно стоящих переменных в данном выражении нет, то всем переменным надо присвоить значение и булева формула разрешится. Это следует из того, что в каждом дизъюнкте есть хотя бы одна переменная с отрицанием, подставив в нее значение мы получим в результате дизъюнкции.В итоге мы получим выражение вида: , что в результате даст нам . В таком случае дальнейшие шаги выполнять не нужно.
Будем считать, что длиной формулы является количество переменных, входящих в нее. Обозначим ее за В каждом шаге мы проходимся по всем переменным и присваиваем некоторым из них какое-то значение. Отсюда следует, что время работы данного алгоритма линейное, относительно количества входящих переменных. . |
Утверждение: |
Функцию можно задать в форме Хорна выполнено следующее следствие: |