Критерий Тарьяна минимальности остовного дерева
Теорема (критерий минимальности остовного дерева Тарьяна): |
Остовное дерево минимально тогда и только тогда, когда любое ребро не из дерева является максимальным на цмкле, который образуется при его добавлении в дерево |
Доказательство: |
Легко заметить, что остовное дерево, не удовлетворяющее условию, не минимально: Если существует ребро, не максимальное на образовавшемся цикле мы можем уменьшить вес дерева, добавив это ребро и удалив максимальное. Теперь докажем, что дерево, удовлетворяющее условию минимально: Обозначим дерево , покажем что его можно построить алгоритмом Крускала.Индукция по количеству ребер в дереве: База: пустое дерево. Строим дерево по лемме о безопасном ребре.Переход: Рассмотрим минимальное невзятое ребро Рассмотрим разрез, окружающий одну из двух компонентПусть По окончании (просмотрели все ребра не минимально в разрезе, тогда существует такое, что . При добавлении в дерево Некое ребро , такое что будет лежать на цикле. Противоречие условию теоремы. Если минимально - добавим его в . ) совпадет с |