Комбинаторные объекты
Определение: |
Комбинаторные объекты (англ. combinatorial objects) — это конечные множества, на элементы которых могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п. |
Определение: |
Если два комбинаторных объекта, различающихся только порядком элементов, считаются различными, то они называются упорядоченными. |
Примеры комбинаторных объектов
Битовые вектора
Битовые вектора — последовательность нулей и единиц заданной длины. Количество таких объектов вычисляется по формуле , так как на каждое из мест мы можем поставить один из двух элементов.
Перестановки
Перестановки[1] — это упорядоченный набор чисел , обычно трактуемый как биекция на множестве , которая числу ставит соответствие -й элемент из набора. Количество перестановок равно . Получить эту формулу можно следующим образом: поставим один из элементов на первое место, далее поставим на второе один из оставшихся элементов,... один из элемента на последнее. Всего таких выборов можно совершить .
Перестановки с повторениями
Перестановки с повторениями — это те же перестановки, однако некоторые элементы могут встречаться несколько раз. Число различных перестановок с повторениями из элементов
, в которых эти элементы повторяются соответственно раз, равно . Выведем формулу. Всего перестановок , однако среди них есть и повторяющиеся. Такие попадаются, когда мы переставляем местами одинаковые элементы. Тогда всего повторяющихся перестановок будет в раз. В итоге получаем необходимую формулу.Размещения
Размещение[2] из по — это упорядоченный набор из различных элементов некоторого -элементного множества. Таких наборов . Выведем формулу подобно тому, как выводили для перестановок: на первое место можно поставить один из элементов, на следующее один из ,... и на последнее один из . Всего получится .
Размещения с повторениями
Размещение с повторениями, составленное из данных
элементов по — это отображение множества первых натуральных чисел в данное множество . Всего таких элементов . Формула выводится так же, как и для битовых векторов.Сочетания
Сочетания[3] из по — это набор элементов, выбранных из данных элементов. Количество таких наборов вычисляется по формуле . Выведем данную формулу из формулы размещений, а именно заметим, что в размещениях порядок элементов имеет значение, а в сочетаниях нет. Это значит, что наборы и эквивалентны. То есть в размещениях любой вариант сочетания повторяется столько же раз, сколько можно сделать перестановок для мест. Тогда .
Сочетания с повторениями
Сочетания с повторениями — это те же сочетания, только теперь даны
типов элементов, из которых нужно выбрать элементов, причем элементов каждого типа неограниченное количество. Способов таких выборов всего .Разбиение на неупорядоченные слагаемые
Разбиение числа на неупорядоченные слагаемые — это представление числа в виде суммы слагаемых. Всего таких разбиений:
где здесь.
— число, не превышаемое слагаемыми, причем начальное значение . Вывод формулы можно найтиРазбиение на подмножества
Разбиение множества — это семейство непустых множеств на подмножества , где — некоторое множество индексов, если:
- для любых , таких что ;
- .
Если задано множество из
элементов, которое необходимо разбить на непустых частей, то последний элемент исходного множества можно либо поместить в отдельную часть ( способами), либо поместить его в некоторое подмножество ( способами, поскольку каждый из способов распределения первых элементов по непустым частям дает подмножеств, с которыми можно объединить последний элемент).
Подробнее можно прочитать на странице о числах Стирлинга второго порядка.