XOR-SAT
Задача: |
КНФ функции, записанной в виде XOR-КНФ, таким образом, чтобы результат данной функции был равен . | (XOR-satisfiability) выполнимость функции — задача распределения аргументов в булевой
Описание
Одним из особых случаев [1]
является класс задач, где каждый дизъюнкт содержит операции (т. е. исключающее или), а не (обычные) операторы.(Формально, обобщенная КНФ с тернарным булевым оператором R работает только если 1 или 3 переменные дают в своих аргументах. Дизъюнкт,имеющие более 3 переменных могут быть преобразованы в сочетании с формулой преобразования с сохранением выполнимости булевой функции(ссылка на книгу ниже), т. е. - может быть снижена до - - )
Это задача Р-класса,так как - формулу можно рассматривать как систему линейных уравнений по модулю 2,которая ,в свою очередь, может быть решена за методом Гаусса[2].Такое представление возможно на основе связи между Булевой алгеброй и Булевым кольцом [3] и тот факт,что арифметика по модулю 2 образует конечное поле [4].
Решение XOR-SAT задачи методом Гаусса
Solving an XOR-SAT example by Gaussian elimination | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Вычислительная сложность
Поскольку a XOR b XOR c принимает значение TRUE,если и только если 1 из 3 переменных {a,b,c} принимает значение TRUE,каждое решение в 1-in-3-SAT задачи для данной КНФ-формулы является также решением XOR-3-SAT задачи,и ,в свою очередь,обратное также верно. Как следствие, для каждой КНФ-формулы, можно решить XOR-3-SAT -задачу и на основании результатов сделать вывод, что либо 3-SAT-задача решаема или, что 1-in-3-SAT-задача нерешаема. При условии ,что P- и NP-классы не равны,ни 2-,ни Хорн-,ни XOR-SAT не являются задачи NP-класса,в отличии от SAT.
См. также
Примечания
Источники информации
- Википедия — Boolean satisfiability problem
- Cook, Stephen A. (1971). Proceedings of the 3rd Annual ACM Symposium on Theory of Computing: 151–158.