Материал из Викиконспекты
Линейность
Покажем что математическое ожыдание линейно. Для етого докажем следующие утверждение
1.[math]f(x+y)=f(x)+f(y)[/math]
{
|proof=
}
2.[math]f(\alpha x)=\alpha f(x)[/math]
Рассмотрим множество [math]K = \{f_g : g \in G\}[/math]. По доказанному выше, оно является подгруппой симметрической группы. Осталось доказать, что [math]G[/math] и [math]K[/math] изоморфны. Для этого рассмотрим функцию [math]T : G \rightarrow K,\, T(x) = f_x[/math]. Заметим, что
- [math]T(g)\circ T(h) = T(g*h)[/math].
Действительно, для всех [math]x \in G \quad(f_g \circ f_h)(x) = f_g(f_h(x)) = f_g(h * x) = g*(h*x) = (g*h)*x = f_{(g*h)}(x)[/math], а тогда [math]T(g)\circ T(h) = f_g \circ f_h = f_{(g*h)} = T(g*h)[/math].
- [math]T[/math] - инъекция, потому что [math]f_g(x) = f_{g'}(x) \Rightarrow g = f_g(x)*x^{-1} = f_{g'}(x)*x^{-1} = g'[/math].
- Сюрьективность [math]T[/math] очевидна из определения [math]K[/math].
То есть [math]T[/math] - гомоморфизм, а значит изоморфизм [math]G[/math] и [math]K[/math] установлен.
}}
Источники