Независимые случайные величины
Определения
| Определение: |
| Cлучайные величины и называются независимыми (англ. independent), если события и независимы. |
Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.
Независимость в совокупности
| Определение: |
| Случайные величины называются независимы в совокупности (англ. mutually independent), если события независимы в совокупности[1]. |
Примеры
Карты
Пусть есть колода из 36 карт (4 масти и 9 номиналов). Мы вытягиваем одну карту из случайным образом перемешанной колоды (вероятности вытягивания каждой отдельной карты равны). Определим следующие случайные величины:
- масть вытянутой карты : 0 - червы, 1 - пики, 2 - крести, 3 - бубны
- номинал вытянутой карты : 0 - номиналы 6 7 8 9 10; 1 - валет, дама, король, туз
Для доказательства того, что независимы, требуется рассмотреть все и проверить выполнение равенства:
Для примера рассмотрим , остальные рассматриваются аналогично:
Тетраэдр
Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): . , .
Рассмотрим случай: , . , , .
Для этих значений и события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.
Заметим, что если: , , то эти величины зависимы: положим . Тогда , , .
Честная игральная кость
Рассмотрим вероятностное пространство «честная игральная кость»: , , . Для того, чтобы показать, что величины зависимы, надо найти такие , при которых
:
, ,
, откуда видно, что величины не являются независимыми.