Задача о счастливых билетах
Версия от 13:22, 6 июня 2017; Rgolchin (обсуждение | вклад)
Троллейбусный (трамвайный) билет имеет номер, состоящий из шести цифр. Билет считается счастливым, если сумма первых трёх цифр равна сумме последних трёх, например,
. Известно, что количество счастливых билетов из шести цифр равно .Задача: |
Для натурального | найти количество -значных счастливых билетов .
Решение с помощью динамического программирования
Обозначим количество
-значных чисел с суммой как (число может содержать ведущие нули). -значный счастливый билет состоит из двух частей: левой ( цифр) и правой (тоже цифр), причём в обеих частях сумма цифр одинакова. Зафиксируем число в левой части (это можно сделать способами), для него будет существовать возможных вариантов числа в правой части, следовательно количество счастливых билетов с суммой в одной из частей равно . Значит общее число билетов равно . Верхний индекс суммирования равен , так как максимальная сумма цифр в одной части билета равна . Также можно сопоставить счастливому билету -значное число с суммой : , причем это соответствие взаимно-однозначно, поэтому . Осталось научиться вычислять . Положим . При количество -значных чисел с суммой цифр можно выразить через количество -значных чисел, добавляя к ним -ю цифру, которая может быть равна : .Решение с помощью производящей функции
Выпишем производящую функцию
, коэффициент при у которой будет равен : Действительно, однозначное число с суммой цифр (для ) можно представить одним способом. Для — ноль способов. Заметим, что — производящая функция для чисел , поскольку коэффициент при получается перебором всех возможных комбинаций из цифр, равных в сумме . Ответом на задачу будет . Перепишем производящую функцию в ином виде: и получим, что . Так как , , что при дает .