Материал из Викиконспекты
Определение
Пусть дано линейно упорядоченное множество [math]~A=\{a_1\lt a_2\lt a_3\lt ...\lt a_k\}[/math] - алфавит, [math]A^*[/math] назовем множество подпоследовательностей конечной длины из алфавита [math] A [/math], [math]A^*=\bigcup^{\infty}_{i=0} A^i[/math], тогда лексикографическим порядком на множестве [math]~A^*[/math] назовем такой порядок, при котором, элементы [math]~x\lt y; x,y \in A^*; x=\{x_1,x_2,...,x_{i_1}\}; y=\{y_1,y_2,...,y_{i_2}\}; x_j,y_j \in A[/math] x>A^*</tex>, то они удовлетворяют условиям:
- либо [math]~i_2\gt i_1[/math] и [math]\forall j\le{i_1}:x_j=y_j[/math]
- либо [math]\exists n\le{\min(i_1,i_2)}:\forall j\lt n:x_j=y_j; x_n\lt y_n[/math]
Примеры
- Последовательность чисел в любой системе счисления, записанных в фиксированной разрядной сетке (000, 001, 002, 003, 004, 005, …, 999).
- Порядок слов в словаре. Предполагается, что буквы можно сравнивать, сравнивая их номера в алфавите. Тогда лексикографический порядок — это, например, ААА, ААБ, ААВ, ААГ, …, ЯЯЯ.
Ссылки