Мультиплексор и демультиплексор
Определение: |
Мультиплексор (англ. multiplexer, или mux) - логическая схема, которая имеет $2^n + n$ входов и один выход. Обозначим входы как $x_0$, $x_1$, $\ldots$, $x_{2^n - 1}$, $s_0$, $s_1$, $\ldots$, $s_{n-1}$. На выход подаётся то же, что подаётся на вход $x_i$, где $i$ - двоичное число, которое кодируется входами $s_0$, $s_1$, $\ldots$, $s_{n - 1}$. |
Определение: |
Демультиплексор (англ. demultiplexer, или demux) - логическая схема, которая имеет $n + 1$ входов и $2^n$ выходов. Обозначим входы как $s_0$, $s_1$, $\ldots$, $s_{n - 1}$, $y$, а выходы как $z_0$, $z_1$, $\ldots$, $z_{2^n-1}$. Тогда на все выходы подаётся $0$, а на выход $z_i$ подаётся то же число, которое подаётся на вход $y$, где $i$ кодируется входами $s_0$, $s_1$, $\ldots$, $s_{n-1}$. |
Принцип работы мультиплексора
Рассмотрим мультиплексор 2-to-1 (это значит, что есть всего два входа $X_0$ и $X_1$, значения которых могут подаваться на вход $Z$). Рассмотрим всевозможные варианты значений на входах. Если на $S$ подавать $0$, то на выход $Z$ будет подаваться то же значение, которое подаётся на вход $X_0$, т.е. в данном случае значение на входе $X_1$ нас не интересует. Аналогично, если на вход $S$ подавать $1$, то на выход $Z$ будет подаваться то же значение, которое подаётся на вход $X_1$. Для более лучшего понимания посмотрим на таблицу истинности.
$S$ | $X_0$ | $X_1$ | $Z$ |
---|---|---|---|
0 | 0 | ? | 0 |
0 | 1 | ? | 1 |
1 | ? | 0 | 0 |
1 | ? | 1 | 1 |
Также рассмотрим мультиплексор 4-to-1 (это значит, что есть четыре входа $X_0$, $X_1$, $X_2$ и $X_3$, значения которых могут подаваться на выход $Z$). Также рассмотрим всевозможные варианты значений на входах. Тут уже 2 входа $S_0$ и $S_1$, которые определяют, значение какого из входов $X_)$, $X_1$, $X_2$ или $X_3$ будет подаваться на выход $Z$. Если $S_0 = S_1 = 0$, то на выход $Z$ будет подаваться значение входа $X_0$, если $S_0 = 1$ и $S_1 = 0$ - то значение $X_1$, если $S_0 = 0$ и $S_1 = 1$ - то значение $X_2$, в противном случае - значение $X_3$. Для более лучшее понимания рекомендуется обратиться к таблице истинности.
$S_0$ | $S_1$ | $X_0$ | $X_1$ | $X_2$ | $X_3$ | $Z$ |
---|---|---|---|---|---|---|
0 | 0 | 0 | ? | ? | ? | 0 |
0 | 0 | 1 | ? | ? | ? | 1 |
1 | 0 | ? | 0 | ? | ? | 0 |
1 | 0 | ? | 1 | ? | ? | 1 |
0 | 1 | ? | ? | 0 | ? | 0 |
0 | 1 | ? | ? | 1 | ? | 1 |
1 | 1 | ? | ? | ? | 0 | 0 |
1 | 1 | ? | ? | ? | 1 | 1 |
Логическая схема мультиплексора
Построим логическую схему мультиплексора. Очевидно, что если входы $s_0$, $s_1$, $\ldots$, $s_{n-1}$ задают вход $x_i$, причем значение на входе $x_i$ равно $0$, то на выходе $z$ будет $0$, если же значение на входе $x_i$ равно $1$, то и на выходе $z$ значение тоже будет $1$. Также давайте построим логическую схему, которая перебирает всевозможные варианты значений на входах $s_0$, $s_1$, $\ldots$, $s_{n-1}$, т.е. имеет $n$ входов и $2^n$ выходов, причём на всех выходах будет $0$ кроме $i$-ого выхода, на котором будет $1$, где $i$ - число, которое кодируется входами. Такая схема называется шифратором, и подробное её устройство можно почитаться в соответствующей статье, размер такой схемы будет $O(2^n)$. Теперь давайте соединим гейтами $AND$ вход $x_i$ и выход $i$ шифратора, а получившиеся провода от гейтов $AND$ мы все сведём к выходу $Z$. Очевидно, что такая схема будет иметь размер, линейно зависящий от количества входов.