Вариации регрессии

Материал из Викиконспекты
Версия от 22:23, 23 января 2019; Penguinni (обсуждение | вклад) (Гребневая регрессия (ридж-регрессия))
Перейти к: навигация, поиск

Регрессия (англ. Regression) — метод моделирования зависимости между зависимой переменной [math]y[/math] и одной или несколькими независимыми переменными [math]x_1, x_2, \dots, x_n[/math]. В случае нескольких независимых переменных регрессия называется множественной (англ. multivariate regression). Цель регрессионного анализа состоит в том, чтобы оценить значение непрерывной выходной переменной по значениям входных переменных.

Линейная регрессия

Основная статья: Линейная регрессия

Линейная регрессия (англ. Linear regression) — разновидность регрессии для моделирования линейной зависимости между зависимой и независимой переменными.

Логистическая регрессия

Основная статья: Логистическая регрессия

Логистическая регрессия (англ. Logistic regression) — разновидность регрессии для моделирования зависимости между зависимой и независимой переменными в случае, когда зависимая переменная [math]y[/math] принимает значения в диапазоне от [math]0[/math] до [math]1[/math].

Гребневая регрессия (ридж-регрессия)

Гребневая регрессия или ридж-регрессия (англ. ridge regression) — один из методов понижения размерности. Применяется для борьбы с избыточностью данных, когда независимые переменные коррелируют друг с другом, вследствие чего проявляется неустойчивость оценок коэффициентов многомерной линейной регрессии.

Мотивация

Мультиколлинеарность (англ. multicollinearity) — наличие линейной зависимости между независимыми переменными регрессионной модели. Различают полную коллинеарность и частичную или просто мультиколлинеарность — наличие сильной корреляции между факторами.

Рассмотрим пример линейной модели: [math]y = b_1 x_1 + b_2 x_2 + b_3 x_3 + \varepsilon[/math]. Пусть имеет место зависимость [math]x_1 = x_2 + x_ 3[/math]. Добавим к первому коэффициенту произвольное число [math]a[/math], а из двух других коэффициентов это же число вычтем. Получаем (без случайной ошибки):

[math]y = (b_1 + a)x_1 + (b_2 - a)x_2 + (b_3 - a)x_3 = b_1 x_1 + b_2 x_2 + b_3 x_3 + a(x_1 - x_2 - x_3) = b_1 x_1 + b_2 x_2 + b_3 x_3[/math]

Несмотря на относительно произвольное изменение коэффициентов модели мы получили исходную модель, то есть такая модель неидентифицируема.

На практике чаще встречается проблема сильной корреляции между независимыми переменными. В этом случае оценки параметров модели получить можно, но они будут неустойчивыми.

Описание

Напомним задачу многомерной линейной регрессии: Рассматривается линейная зависимость [math]f(x, \beta) = \langle \beta, x \rangle[/math].

Находим вектор [math]\beta^*[/math], при котором достигается минимум среднего квадрата ошибки:

[math]Q(\beta) = ||F \beta - y||^2[/math]


[math]\beta^*=\arg \min\limits_\beta Q(\beta)[/math]

Методом наименьших квадратов находим решение:

[math]\beta^* = (F^T F)^{-1} F^T y[/math]

В условиях мультиколлинеарности матрица [math]F^T F[/math] становится плохо обусловленной.

Для решения этой проблемы добавим к функционалу [math]Q[/math] регуляризационное слагаемое:

[math]Q_{\tau}(\beta) = ||F \beta - y||^2 + \tau ||\beta||^2[/math],

где [math]\tau[/math] — неотрицательный параметр.

Решением в этом случае будет

[math]\beta^* = (F^T F + \tau I_n)^{-1} F^T y[/math]

Это изменение увеличивает собственные значения матрицы [math]F^T F[/math], но не изменяет ее собственные вектора. В результате имеем хорошо обусловленную матрицу.

Диагональная матрица [math]\tau I_n[/math] называется гребнем.

Пример кода для Scikit-learn

Лассо-регрессия

Описание

Пример кода для Scikit-learn

Байесовская

Логическая регрессия

Другие виды регрессии

Экологическая регрессия

LAD-регрессия

Джекнайф-регрессия

См. также

Источники информации