Вариации регрессии
Регрессия (англ. Regression) — метод моделирования зависимости между зависимой переменной
и одной или несколькими независимыми переменными . В случае нескольких независимых переменных регрессия называется множественной (англ. multivariate regression). Цель регрессионного анализа состоит в том, чтобы оценить значение непрерывной выходной переменной по значениям входных переменных.Линейная регрессия
Линейная регрессия (англ. Linear regression) — разновидность регрессии для моделирования линейной зависимости между зависимой и независимой переменными.
Логистическая регрессия
Логистическая регрессия (англ. Logistic regression) — разновидность регрессии для моделирования зависимости между зависимой и независимой переменными в случае, когда зависимая переменная
принимает значения в диапазоне от до .Гребневая регрессия (ридж-регрессия)
Гребневая регрессия или ридж-регрессия (англ. ridge regression) — один из методов понижения размерности. Применяется для борьбы с избыточностью данных, когда независимые переменные коррелируют друг с другом, вследствие чего проявляется неустойчивость оценок коэффициентов многомерной линейной регрессии.
Мотивация
Мультиколлинеарность (англ. multicollinearity) — наличие линейной зависимости между независимыми переменными регрессионной модели. Различают полную коллинеарность и частичную или просто мультиколлинеарность — наличие сильной корреляции между факторами.
Рассмотрим пример линейной модели:
. Пусть имеет место зависимость . Добавим к первому коэффициенту произвольное число , а из двух других коэффициентов это же число вычтем. Получаем (без случайной ошибки):
Несмотря на относительно произвольное изменение коэффициентов модели мы получили исходную модель, то есть такая модель неидентифицируема.
На практике чаще встречается проблема сильной корреляции между независимыми переменными. В этом случае оценки параметров модели получить можно, но они будут неустойчивыми.
Описание
Напомним задачу многомерной линейной регрессии: Рассматривается линейная зависимость
.Находим вектор
, при котором достигается минимум среднего квадрата ошибки:
Методом наименьших квадратов находим решение:
В условиях мультиколлинеарности матрица
становится плохо обусловленной.Для решения этой проблемы добавим к функционалу
регуляризационное слагаемое:где
— неотрицательный параметр.Решением в этом случае будет
Это изменение увеличивает собственные значения матрицы
, но не изменяет ее собственные вектора. В результате имеем хорошо обусловленную матрицу.Диагональная матрица
называется гребнем.