Оценка качества в задачах классификации
Общие понятия
- TP — true positive, классификатор верно отнёс объект к рассматриваемому классу.
- TN — true negative, классификатор верно утверждает, что объект не принадлежит к рассматриваемому классу.
- FP — false positive, классификатор неверно отнёс объект к рассматриваемому классу.
- FN — false negative, классификатор неверно утверждает, что объект не принадлежит к рассматриваемому классу.
Confusion matrix (матрица несоответствий) наглядно показывает суть этих показателей:
Принадлежит классу (P) | Не принадлежит классу (N) | |
---|---|---|
Предсказана принадлежность классу | TP | FP |
Предсказано отсутствие принадлежности к классу | FN | TN |
Простые оценки
- Accuracy (точность), показывает долю правильных классификаций. Несмотря на очевидность и простоту является одной из самых малоинформативных оценок классификаторов.
- Recall (полнота), так же sensitivity и TPR (true positive rate), показывает долю найденных объектов класса к общему числу объектов класса. Иначе говоря то, насколько хорошо наш классификатор находит объекты из класса.
- Precision (да, тоже точность), показывает долю объектов класса среди объектов выделенных классификатором.
- Fall-out, так же FPR (false positive rate), показывает долю неверных срабатываний классификатора к общему числу объектов за пределами класса. Иначе говоря то, насколько часто классификатор ошибается при отнесении того или иного объекта к классу.