Карлукова M32342 временная статья
Версия от 01:45, 1 июня 2020; I am dark black (обсуждение | вклад) (→Представление в виде отношения многочленов производящей функции для последовательности чисел Фибоначчи)
Примечание: в редактируемой статье указано, что достаточно рассматривать . :)
Теорема о связи этих понятий
Теорема: |
Последовательность является линейной рекуррентной последовательностью с первыми заданными членами, определяемыми коэффициентами её производящая функция является дробно-рациональной, причём представимой в виде , где , . |
Доказательство: |
Пусть — коэффициенты, задающие линейную рекуррентную последовательность , то есть первые членов заданы, а для следующих справедливо соотношение .Напишем друг под другом несколько производящих функций и соответствующих им формальных степенных рядов:
Сложим все равенства и получим
Для всех выполняется равенство , поэтому в правой части все коэффициенты при степенях, начиная с , обнулятся, а равенство будет выглядеть следующим образом:. Заметим, что второй множитель в левой части равен в точности , а степень правой части не превосходит . Получили требуемое построение.Замечание. Многочлен можно найти по формуле как числитель получившейся дроби. К результату можно применить взятие его по модулю . Это действие не испортит многочлен, так как его степень строго меньше . При этом мы сократим число операций при вычислении , поскольку достаточно найти только первых членов результирующего ряда, а для этого можно обойтись только первыми слагаемыми степенных рядов, соответствующих производящим функциям и .Итак, .
Пусть , , .Перепишем первое равенство, выразив через и : .Так как произведения степенных рядов, получаем . , выполнено для любого . Расписывая по определениюРазобьём полученную сумму на две: . Так как известно, можем определить, чему равны эти суммы. Для первой выполняются равенства:, для всех за исключением нуля. Вторая же компонента равна нулю, поскольку . Тогда .Развернём выражение для :. Перенесём все слагаемые, кроме , вправо:Видим, что . — член линейной рекуррентной последовательности, заданной коэффициентами , причём это выполнено для всех , так как индекс , удовлетворяющий данному условию, выбирался произвольно. |
Примеры
Представление в виде отношения многочленов производящей функции для последовательности чисел Фибоначчи
Введём обозначения:
— производящая функция для чисел Фибоначчи, .
Последовательность задаётся следующим образом:
,
, .
Здесь
и , следовательно .К числителю применим формулу
. Чтобы получить ответ, требуется всего лишь найти и .,
.
Таким образом,
.